
, BASIC

CARTRIDGE MEMORY
EXPANDER FOR THE

COMMODORE 64

cordco, inc.
300 S. Topeka. Wichita, KS 67201

•

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

GUARANTEE

For as long as this product is owned by
its original owner, CARDCO, Inc. will repair
or replace any defective parts or the entire
unit if it should become inoperative due to a
defect in manufacture or materials, providing
the unit is returned to CARDCO, Inc. in
undamaged condition with proof of purchase
(purchase receipt).

NOTICE: The Demo Diskette that is included
with this cartridge is NOT covered by the
above guarantee. See the appendix of this
manual under the heading S'MORE DEMO DISKETTE
for the diskette limited guarantee.

This product is distributed by:

CARDCO, Inc.
300 S. Topeka
Wichita, KS.

67202

I

Simore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

COPYRIGHT NOTICES

This software is copyrighted and all
rights are reserved. This software may not
be copied or reproduced in any manner without
the written permission of CARDCO, Inc.,
KINGSOFT, Andreas Arens and Michael Meiszl

COPYRIGHT (c) 1985 by KINGSOFT

This manual is also copyrighted and all
rights are reserved. This manual may not be
copied or reproduced in any manner without
the written permission of CARDCO, Inc., and
E.J. Lippert II.

COPYRIGHT (c) 1985 by CARDCO, Inc.

FIRST Printing - FIRST Revision

II

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

INSTALLATION OF THE SIMORE CARTRIDGE

When used properly your S'more Basic
cartridge will provide a lifetime of
satisfactory service. The following rules
should be followed to assure trouble free
operation:

1. Always turn your computer OFF when
inserting or removing the S'more (or any
other) cartridge.

2. Install the S'more cartridge with the
S'more name plate facing up.

WARNING: Installing or removing the S'more
cartridge upside down, or without turning
your computer off can cause damage to both
your S'more cartridge and your computer, and
will invalidate your Guarantee.

III

S" more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

HARDWARE COMPATIBILITY

Your S" more cartridge will work with both
the Commodore 64 and the Commodore SX-64
computers, as well as with all other
Commodore (or fully Commodore compatible)
Disk Driver, Printers and Printer Interfaces.
S" more may not be fully compatible with some
other accessories like multi-slot expansion
boards and screen expanders.

NOTE: If your S'more cartridge fails to
power-up or operates erratically, please have
the power supply of your computer tested
before accusing S' more of not working.
Commodore 64 computers have a history of
inadequate and/or deteriorating (getting
worse with heat and time) power supply
capacity. The chances of power supply
deterioration are many times greater than
those of a defective S'more cartridge.

SOFTWARE COMPATIBILITY

S" more Basic is compatible with all
Commodore 64 Basic commands. For more
information on software compatibility refer
to the following sections of this manual:

S"MORE BASIC VS. COMMODORE 64 BASIC
PEEKS AND POKES
MACHINE LANGUAGE WITH S"MORE BASIC
MEMORY MAP

IV

S'more Basic - INSTRUCTION MANUAL

CARDeo, Inc. - (316) 267-6525

TABLE OF CONTENTS

Introduction Page 1

General Conventions Page 2
Format Conventions Page 3
KeyWords Page 4

S'more Basic vs.
Commodore 64 Basic Page 7

PART ONE - TOOL KIT Page 11
HELP Page 12
APOSTROPHE Page 14
AUTO Page 15
LIST Page 17
DELETE Page 18
FIND Page 20
CHANGE Page 23
NUMBER Page 25
DUMP Page 28
TRACE Page 29
OLD Page 30
DEC Page 31
HEX$ Page 32
KEY Page 33

KEY Page 33
KEY OFF Page 35
KEY ON Page 35
KEY CLR Page 35
KEY NORM Page 35
KEY #,def Page 36

v

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (3I6) 267-6525

PART TWO - ONE LINERS Page 39
CLS Page 40
UPPER Page 41
LOWER Page 42
REPEAT Page 43
NORM Page 44
STOP Page 45
RESET Page 46
MONITOR Page 47
BORDER Page 48
PAPER Page 48
INK Page 48

PART THREE - DISKQUICK Page 52
CATALOG Page 53
LOAD Page 54
RUN Page 56
MERGE Page 58
DISK Page 60
DS Page 62
DS$ Page 62
DOPEN# Page 64
RECORD# Page 66

PART FOUR - OUT WITH STYLE Page 68
AT Page 69
USING Page 72
PUDEF Page 93

VI

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

PART FIVE - IN STYLE Page 95
INPUT Page 96
INLINE Page 97
INLINE# Page 99
INFORM Page 100
GETKEY Page 102

PART SIX - TO ERR IS HUMAN Page 103
TRAP Page 104
ER Page 106
EL Page 106
ERR$ Page 107
RESUME Page 108

PART SEVEN - DO ... Page 110
DO Page III
LOOP Page III
WHILE Page 112
UNTIL Page 112
EXIT Page 115

PART EIGHT - STRING THINGS Page 116
INSTR Page 117
MID$ Page 119
ELSE Page 121
RESTORE Page 122

VII

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

PART NINE - PEEKS & POKES
RESERVED VARIABLES
LOCATION CONVERSION CHART

APPENDIX

MACHINE LANGUAGE PROGRAMMING
100% MACHINE LANGUAGE PROGRAMS
MACHINE LANGUAGE SUBROUTINES

GUIDELINES FOR H/L PROGRAHS
PROGRAH LOCATION
S'HORE BASIC HEHORY MAP
ROM CALLS, ETC.
RAM/ROM BANKING
DETAILED MEMORY MAP

S'MORE BASIC COHPILER

S'MORE DEMO DISKETTE

S'HORE BASIC MEMORY ALLOCATION

INDEX

VIII

Page 123
Page 124
Page 129

Page i

Page i
Page ii
Page iii

Page v
Page v
Page vi
Page vii
Page viii
Page ix

Page xvii

Page xviii

Page xx

Page xxi

s"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

INTRODUCTION

Thank you for purchasing S'more. We hope
the cartridge and this manual will allow you
to write better programs and make better use
of your previously written programs. If you
require additional help or feel you might
have a problem with your S'more cartridge
please call or write our customer service
department between gAM and 5PM (Central Time
Zone) Monday through Friday. The phone
number is at the top of every page of this
manual and the address is:

CARDCO, Inc.
300 S. Topeka
Wichita, KS.

67202

About This Manual

Within this manual all of the new
co@nands provided by S'more are divided into
groups of similar commands. We recommend a
complete reading and understanding of the
first two sections of this manual
(CONVENTIONS and S'MORE BASIC VS. CBM BASIC)
before trying to go on to use your new S'more
cartridge.

PAGE 1

S" more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

GENERAL CONVENTIONS

Please read these important
standard conventions (notation
in this manual.

notes on the
system) used

Within this manual you will encounter
specific formats (called conventions) which
are used consistently to describe certain
situations. For example whenever you see
<RETURN> that means you should press the
return key. For example, if you saw a
command listed as:

NEW <RETURN>

you would type the command NEW and then press
the return key.

You will also see <SHIFT> and it tells
you that you should hold down the shift key.
The <SHIFT> is usually used in conjunction
with another key like the return key or one
of the function keys, for example:

<SHIFT/RETURN>

would mean you should hold down the shift key
while pressing the return key.

<SHIFT/F7>

would mean you should hold down the shift key
while pressing the F7 function key.

PAGE 2

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

FORMAT CONVENTIONS

When each new KEYWORD is given you will
be given the following information:

KEYWORD:

ALTERNATE:

FORMAT:

t10DE:

This short capsule of information will
give most programmers all the information
they need to use each new command or
function. The text following the heading
will provide additional information about the
KEYWORD. Finally you will be provided with
examples of the use of each keyword so you
can see how they are actually used.

KEYWORD - This is the fully spelled out form
of the co~nand or function. Some examples of
standard Commodore Basic KEYWORDs would be
RUN, LIST, PRINT and GOSUB.

PAGE 3

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

ALTERNATE - This is the shortened form of the
KEYWORD. Most KEYWORDs have shortened forms.
For example the short forms of the Commodore
Basic KEYWORDs listed above would be RUN
R<SHIFT/U>, LIST - L<SHIFT/I>, PRINT - ? and
GOSUB - GO<SHIFT/S>.

FORMAT - This will be an example of the
format that should be used for the KEYWORD
being explained. Some statements require
additional information (usually called
parameters) for proper execution of the
command. For example if a format given was:

FORMAT: NEW

no additional information needs to be
supplied, so no extra parameter formats are
given. But if the format were:

FORMAT: TAB(x)

the lower case x enclosed within parentheses
indicates that additional information is
required.

PAGE 4

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

Different letter/number combinations will
be used throughout this manual to signify
specific parameter requirements. The table
below lists the conventions used:

* Upper case letters must be entered exactly
as shown in the FORMAT example.

* Commas, colons
entered exactly
example.

and parentheses
as shown in the

must be
FORMAT

* Items surrounded by square brackets [J are
optional and need only be entered as
desired. In some cases, if optional items
are not entered, values are automatically
assigned to them. These values are called
the default values. Default values will
be given where they apply for each
KEYWORD.

* A lower case letter signifies a numeric
value is required. The limits on the value
will be specified following the FORMAT in
parentheses. Unless otherwise stated, the
value requirement can be fulfilled with
either a number or a variable. For
example:

A=l:TAB(A)
or

TAB(l)

PAGE 5

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

* A lower case letter followed by a dollar
sign (ie: a$, b$ etc.) will signify that a
string of characters is required. If
specific requirements are placed on the
string required they will be defined
following the FORMAT. Unless otherwise
stated the requirement can be fulfilled
with either a string of characters (which
must be contained in quotation marks) or
a string variable. For example:

PRINT "HELLO"
or

A$="HELLO" : PRINT A$

MODE As with the regular Commodore Basic
commands and functions, S'more Basic commands
and functions may be used in either the
DIRECT mode or the PROGRAM mode, and some may
be used in both. This line will let you know
in which MODE each command may be used.

The DIRECT (or immediate) mode refers to
executing (typing in) a command DIRECTly from
the keyboard as opposed to the PROGRAM mode,
which would be using the command within a
program. For example when you type LOAD
"PROGRAM" you are telling your computer to
LOAD a program now. A more complete
explanation of the DIRECT and PROGRAM modes
may be found in your Commodore instruction
manual.

PAGE 6

Simore Basic INSTRUCTION MANUAL

CARnCO. Inc. (316) 267-6525

S I MORE BASIC VS. COMMODORE 64 BASIC

S'more Basic understands and works with
all Commodore 64 Basic KEYWORDS. That means
that basic programs written in normal
Commodore 64 Basic will run without changing
any of the basic program commands. BUT, (why
is there always a but) in order to expand the
memory to use the full 64K available, some of
the memory locations had to be changed. What
that will mean to you will depend on several
things.

First, if your program uses PEEKs and
POKEs, refer to the section called PEEKS AND
POKES to see what you must change. (We have
provided a neat little program on the disk
that comes with the S'more cartridge
(LOAD"PEEKER") that will identify potential
PEEK and POKE problems, and even make some of
the corrections for you.)

Second, if your program
language sub-routines, refer
map in the appendix of this
locations and kernal calls.

includes machine
to the memory
book for proper

Third, if your program uses the function
keys, you will have to turn off the special
function key definitions that are provided by
S'more. (See: KEY OFF) Turning off the
function key definitions can be done by
placing the statement KEY OFF as one of the
first statements in your program.

PAGE 7

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

Last, to take advantage of the additional
memory available when running under S'more
Basic, you may wish to check for possible
array variables that can be increased in
size. The FIND function that is one of the
new commands provided by S'more will help you
expedite this process.

S'more Basic has some other nice features
built into it that aren't even listed as new
commands because they are completely
invisible to you as a programmer. These
handy features just do their job without any
prompting required on your part.

* UP/DO~tN SCROLLING

When listing a long program, stopping on
the line you want to see can be a real pain
with a normal Commodore 64. Well, with
S'more Basic all you need to do is list any
part of the program to the screen and then
simply use the cursor up and cursor down keys
to scroll up or down to see the rest of the
program. That should cut substantially on
your aggravation level.

PAGE 8

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

* FAST GARBAGE COLLECTION

If you have ever had your computer seem
to lock-up for several minutes while you were
entering data or working on some other
program that used a lot of string
manipulation then you have experienced the
frustration of the "GARBAGE COLLECTION"
waiting game. Garbage collection is the term
used to describe what happens when a computer
runs out of temporary storage space and must
clear out the garbage data to make room for
new data.

The additional memory provided by S'more
will cut down the chances of using all of the
memory and incurring the wrath of the Garbage
Collector. If you do happen to need all the
memory S'more makes available, it will
comfort you to know that S'more provides an
Intelligent Garbage Collector who works
hundreds of times faster (smarter?) than the
Garbage Collector Commodore puts in the
Commodore 64. Waits of up to 15 minutes are
possible with Commodore's Garbage Collector,
but you will never have to wait more than a
couple of seconds for your Intelligent
Garbage Collector.

PAGE 9

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (3I6) 267-6525

* NULL STRING FIX

A very common complaint about Commodore
Basic is that a null (empty) string received
from any I/O device (disk drive, keyboard,
etc.) does not equal CHR$(0). With S'more
Basic any attempt to get the CHR$ value of a
null string will return a value of CHR$(0).

Commodore Basic:

10 GET A$: IF A$ = 1111 THEN A$ = CHR$(0)
20 A = ASC(A$)

OR

10 GET A$: A$ = A$ + CHR$(0)
20 A = ASC(A$)

S'more Basic:

10 GET A$: A = ASC(A$)

* COMMODORE BASIC COMMAND ENHANCEMENTS

Other Commodore Basic Commands have been
enhanced. The enhancements have been done in
such a way that the normal use of the command
is the same as it was under Commodore Basic,
so that existing programs will not need to be
modified. Each of these enhanced commands is
treated as a new command in this manual.
(See: IF ... THEN, INPUT, LIST, LOAD, PRINT,
MID$, RESUME, RUN, SAVE, STOP, and VERIFY)

PAGE 1121

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

PART ONE

YOUR TOOL KIT

The first set of commands explained will
be tools that you as a programmer can use to
speed up your programming, program editing
and de-bugging. These commands will be used
most often in the DIRECT mode, but some may
be useful in the PROGRAM mode as well. The
area of programming aids was the area that we
felt was most lacking in Commodore Basic.
Using these commands will make programming a
lot easier.

PAGE 11

Slmore Basic INSTRUCTION MANUAL

CARDCO. Inc. (316) 267-6525

KEYWORD: HELP

ALTERNATE: NONE

FORMAT: HELP a$

(a$ must be either ON or OFF)
(NOTE: No quotation marks needed)

MODE: DIRECT

The HELP function is automatically turned
on during power-up of
function is ON and an
during the running of
do the following:

S'more. When the HELP
error is encountered
a program, S'more will

1. Stop program execution.

2. Print to the screen the standard
Con~odore Basic error message.

For example:
SYNTAX ERROR LINE 125

3. Print to the screen the complete program
line containing the error.

4. Place the cursor on the first character
of the program statement that caused the
error to occur.

PAGE 12

..

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (3I6) 267-6525

When the HELP function is OFF and an
error is encountered during the running of a
program, S'more will react like Commodore
Basic and print to the screen the standard
Commodore Basic error message.

EXAMPLE # 1

HELP OFF <RETURN>

SYNTAX ERROR LINE 148

EXAMPLE # 2

HELP ON <RETURN>

SYNTAX ERROR LINE 148

148 FOR I = 0 TO 65 : IBPUT A$(I) : NEXT
A.

Cursor Shows Here

PAGE 13

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: I (Apostrophe)

ALTERNATE: NONE

FORMAT: , this is a remark:

MODE: DIRECT and PROGRAM

The apostrophe (also (') or the <SHIFT/7>
key) serves the same function as the REM
statement in basic with one minor exception,
the apostrophe tells the program to skip to
the next colon (as opposed to skip to the
next line as caused by the REM statement) and
continue program execution. This allows the
programmer to put one or more program notes
in the middle of a line at the exact program
statement that the note refers to.

EXfu~PLE # 1

10 A=0: 'SET A TO ZERO:OPEN4,4,7: 'SET PRINTER
TO UPPER/LOWER CASE:GOT050

PAGE 14

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: AUTO

ALTERNATE: A<SHIFTjU>

FORMAT: AUTO [xJ

MODE:

(x is any number from 0 to 63998)
Default: x=0

DIRECT

'ro use the automatic line numbering
function you must enable the function with
the KEYWORD 'AUTO' followed by a number
greater than 0 (ZERO). The number will be
the increment between line numbers. For
example to number in increments of 10 use the
command:

AUTO 10 <RETURN>

NOTE: The space between AUTO the increment
number is optional.

NOTE: The space following every KEYWORD
in this manual is optional and shown
for clarity only.

Once the function is enabled whenever you
enter a program line S'more will
automatically print the next line number on
the screen and place your cursor in the
proper position to start typing in the next
program statement. If you were using the
'AUTO 10' command as listed above and entered

PAGE 15

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

a line numbered 112, S'more would print 122
as the next (112 + 10) line number. If you
are done entering program lines, use
<SHIFT/RETURN> to put the cursor on an new
un-numbered line. To turn off the AUTO
function, type:

AUTO 0 <RETURN>

EXAMPLE # 1

Start AUTO function with increment of 20

AUTO 20 <RETURN>

EXAMPLE # 2

To turn off the AUTO function

AUTO 0 <RETURN>
or

AUTO <RETURN>

NOTE: AUTO <RETURN> works here because the
default value is 0 (ZERO).

PAGE 16

..

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: LIST

ALTERNATE: L<SHIFT/I>

FORMAT:

MODE:

LIST [a] [-b]

(a is the starting line number)
(b is the ending line number)
Default: a=0 : b=63999

DIRECT and PROGRAM

The LIST command is an enhanced version
of the Commodore Basic command. While you
can use the LIST command in a program in
standard Commodore Basic, when the command is
executed it terminates the program. With
S'more Basic you can, from within a program,
list the program, or any part of it, and
continue on with the program.

EXAMPLE # 1

LIST 100-150 <RETURN>

EXAMPLE # 2

100 GET A$: IF A$ = "" THEN GOTO 100
110 IF A$ <> "L" THEN GOTO 130
120 LIST 100-200 : A$ = "R" : GOTO 110
130 ' CONTINUE PROGRAM OPERATION

PAGE 17

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: DELETE

ALTERNATE: DE<SHIFT/L>

FORMAT:

MODE:

DELETE [a] [-b]

(a is the line number to delete
or start deleting from)

(b is the highest line number
to be deleted)

Default: a=0 : b=63999

DIRECT

The format of the DELETE command is
exactly like that of the LIST command. But,
while the DELETE command allows you to easily
delete a line or group of lines from your
program, it may NOT be used in the PROGRAM
mode.

EXAMPLE # 1

This command will delete line number 10
from your program if it exists.

DELETE 10 <RETURN>

EXAMPLE # 2

This command will delete all program
lines greater than 99 from your program.

DELETE 100- <RETURN>

PAGE 18

Simore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

EXAMPLE # 3

This command will delete all program
lines less then 401 from your program.

DELETE -400 <RETURN>

EXAMPLE # 4

This command will delete all program
line numbers from 150 through 160 inclusive
from your program.

DELETE 150-160 <RETURN>

EXAMPLE # 5

This command will delete all program
line numbers from your program.

DELETE - <RETURN>

NOTE: This way of deleting a program from
memory is not the same as the NEW command.
The OLD command will not find a program
deleted in this manner.

PAGE 19

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: FIND

ALTERNATE: F<SHIFT/I>

FORMAT:

MODE:

FIND a$ [,[xJ-[yJJ

(a$ is any group of characters
that mayor may not be enclosed
in quotation marks. The comma
is not allowed as a character
because it is used to separate
the string to be found from the
next parameter.

(x is the optional starting line)
(y is the optional ending line)
Defaults: x=0 : y=63999

DIRECT

The FIND command allows you to quickly
locate strings, variables, commands and
functions in your program. For example if
you wanted to find every line in your program
that contained a print statement, you could
easily do this with the FIND command. The
FIND command will search through your program
and list to the screen or to your printer _
every line that contains the item you want to
find.

Be sure to be aware of these important
rules:

PAGE 20

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

RULE 1: All KEYWORDS may be used in their
alternate form (ie: ? for PRINT or D<SHIFTjA>
for DATA) with this command.

RULE 2: When searching for items contained
within quotation marks, always use quotation
marks around the item to find.

RULE 3: A search for a partial keyword will
not find the keyword. (ie: FIND PRI <RETURN>
will not find PRINT or PRINT#8 etc.)

RULE 4: When finding a variable like a$,
S'more will also find arrays like a$(i) etc.

RULE 5: A search for the variable a will also
find all variables beginning with a like a$,
ab, a(i) etc.

RULE 6: When finding a text string it is
sometimes wise to include spaces or
punctuation to eliminate un-wanted matches.

FIND "AT" <RETURN>

will also find "ATTENTION" ,
"r1ATTER", while

FIND " AT" <RETURN>

"WHAT" and

wouldn't find those words by mistake, but
would miss" AT." because of the trailing
period.

PAGE 21

Slmore Basic - INSTRUCTION MANUAL

CARnCO, Inc. - (316) 267-6525

EXAMPLE # 1

FIND A <RETURN>

EXAMPLE # 2

FIND "At" <RETURN>

EXAMPLE # 3

FIND OPEN,300- <RETURN>

EXAMPLE # 4

FIND PRINT,140-240 <RETURN>

EXAMPLE # 5

FIND FORX=,-40 <RETURN>

EXAMPLE # 6

FIND A$(,-600 <RETURN>

PAGE 22

..

S" more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: CHANGE

ALTERNATE: CH<SHIFT/A>

FORMAT:

MODE:

CHANGE a$,b$ [,[xJ-[yJJ

(a$ is any group of characters
that mayor may not be enclosed
in quotation marks. The comma
is not allowed as a character
because it is used to separate
the string to be replaced from
the replacement string.)

(b$ is any group of characters
that mayor may not be enclosed
in quotation marks. The comma
is not allowed as a character
because it is used to separate
the replacement string from the
line number limiters.)

(x is the optional starting line)
(y is the optional ending line)
Defaults: x=0 : y=63999

DIRECT

If you think the CHANGE command looks
like the FIND command with something added,
you're right. The CHANGE command allows you
to find and change things in your program
without re-typing everything. For example if
you wanted to change a file number from 8 to
9, you could easily do this with CHANGE.

PAGE 23

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

EXAMPLE # 1

This command will cause PRINT#8 to be changed
to PRINT#9 throughout the entire program.

CHANGE PRINT#8,PRINT#9 <RETURN>

EXAMPLE # 2

This command will cause "New" to be changed
to "Old" throughout the program starting at
line number 100 (inclusive).

CHANGE "New", "Old" , 100- <RETURN>

EXAMPLE # 3

This command will cause "HOT" to be changed
to "COLD" starting at line number 0 and
stopping at line number 1000 (inclusive).

CHANGE "HOT", "COLD", -1000 <RETURN>

EXAMPLE # 4

This command will cause "A$(" to be changed
to "AB$(" starting at line number 200 and
stopping at line number 300 (inclusive).

CHANGE "A$(","AB$(",200-300 <RETURN>

NOTE: All the notes that apply to the FIND
command also apply to the CHANGE command.

PAGE 24

Si more Basic INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

KEYWORD: NUMBER

ALTERNATE: N<SHIFT/U>

FORMAT:

MODE:

NUMBER [a] [,b] [,e]

(a is the number to be used
as the lowest line number.

(b is the increment between
line numbers.

(c is the program line number
to start renumbering at.

Default: a=10 : b=10: c=0)

DIRECT

The NUMBER command allows you to renumber
your entire program or part of your program.
Number can be used to give you more room
between line numbers of a program as well as
to make your programs look more
professional.

The NUMBER command will automatically
renumber all references (ie: GOTO's, GOSUB's,
etc.) to specific lines. If a reference to a
non-existent line is found, S'more will
assign it a line number of 63999. So after
you renumber any program you should use the
FIND command to locate any occurrences of the
number 63999 (FIND 63999 <RETURN» so you
can correct your mistake before it causes a
program error.

PAGE 25

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

EXAMPLE # 1

This will renumber all program lines.
After this function is completed the first
line number in your program will be 10, the
next 20, the next 30 and so on ...

NUMBER <RETURN>
or

NUMBER 10 <RETURN>
or

NUMBER ,10 <RETURN>
or

NUMBER 10,10 <RETURN>
or

NUMBER , ,0 <RETURN>
or

NUMBER 10, , ° <RETURN>
or

NUMBER ,1O,O <RETURN>
or

NUMBER 10,1O,O <RETURN>

NOTE: All of the above commands will have
exactly the same net effect, because of the
default values established by S'more.

PAGE 26

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

EXAMPLE # 2

This will renumber all program lines.
After this function is completed the first
line number in your program will be 1000, the
next 1010, the next 1020 and so on ...

NUMBER 1000 <RETURN>
or

NUMBER 1000,10 <RETURN>
or

NUMBER 1000,10,0 <RETURN>

EXAMPLE # 3

This will renumber only the lines of your
program that are greater than Ieee, starting
at 1000 in increments of 100.

NUMBER 1000,100,1000 <RETURN>

NOTE: After you have finished with a program
you can compact it so the program takes up
less memory by renumbering it starting at 1
with increments of 1. (NUMBER1,l <RETURN»
Try this with a large program and use the
FRE(0) function to see just how much memory
line numbers can waste.

PAGE 27

S" rnore Basic INSTRUCTION MANUAL

CARDCO. Inc. (316) 267-6525

KEYWORD: DUMP

ALTERNATE: D<SBIFTjU>

FORMAT: DUMP

MODE: DIRECT

When the DUMP command is used S'more will
list all of the non-array variables and their
values that are active as of that point in
your program. The DUMP command must be used
before editing any program lines, because
editing clears all variables.

DUMP is a very handy tool to help
determine what went wrong in a program that
uses multiple nested for/next loops, or other
multiple variable problems. Dump will list
variables to the screen or, as shown below,
to the printer.

EXAMPLE # I

To DUMP to the screen

DUMP <RETURN>

EXAMPLE # 2

To DUHP to the printer

OPEN4,4 . CMD4 : DUMP . <RETURN>

PAGE 28

..

...

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: TRACE

ALTERNATE: TRA<SHIFT/C>

FORMAT:

MODE:

TRACE a$

(a$ must be either ON or OFF)
(NOTE: No quotation marks needed)

DIRECT and PROGRAM

The TRACE function allows you to track
the execution of your program line by line.
As each program statement is executed, the
line number containing the program statement
is printed on the screen. TRACE does slow
down program execution so S'more allows you
to use the trace command as a program
statement so that you can turn TRACE on or
off as desired.

EXAMPLE 11= 1

TRACE ON <RETURN>

EXAMPLE 11= 2

1010 FOR I = 0 TO 999
1020 GOSUB 300 : IF X = 60 THEN TRACE ON
1030 NEXT : TRACE OFF

PAGE 29

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: OLD

ALTERNATE: NONE

FORMAT: OLD

MODE: DIRECT

Although you may not use this command
very often, if you ever need it you will be
very glad you've got it. The simplest
explanation of what the OLD command does is
to say that it is the opposite of the
Commodore Basic NEW command. The OLD command
will restore a program that has been erased
from memory by the NEW command.

SPECIAL NOTE: The OLD command will also
restore a program after a system reset. Some
expansion devices provide a hardware system
reset button, usually the OLD command will
restore a program that has been interrupted
by this type of reset.

SPECIAL SPECIAL NOTE: Occasionally a power
surge or static discharge will cause your
computer to lock-up or restart. OLD will
sometimes restore a program after even this
total devastation. (To clear a system
lock-up you will need a hardware system reset
as mentioned above.) Type: OLD <RETURN>
as soon as you have a cursor, before trying
to do anything else.

PAGE 30

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (3I6) 267-6525

KEYWORD: DEC

ALTERNATE: NONE

FORMAT:

MODE:

DEC(a$)

(a$ is a hexadecimal number less
than or equal to FFFF)

DIRECT and PROGRAM

This command will help you to easily
convert hexadecimal to decimal numbers. The
hexadecimal number must be a string variable
or enclosed in quotation marks.

EXAMPLE # 1

PRINT DEC ("FE44") <RETURN>

EXAMPLE # 2

A$ = "E34D" PRINT DEC(A$) <RETURN>

EXAMPLE # 3

10 INPUT"ENTER A HEX VALUE";A$
20 IF LEN(A$) > 4 THEN GOTO 70
30 FOR I = 1 TO LEN(A$)
40 B$ = MID$(A$,I,l) : B = ASC(B$)
50 IF «B>47) AND (B<58» THEN GOTO 80
60 IF «B>64) AND (B<71» THEN GOTO 80
70 PRINT "BAD NUMBER" : GOTO 10
80 NEXT : PRINT DEC(A$) : GOTO 10

PAGE 31

S'more Basic INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

KEYWORD: HEX$

ALTERNATE: NONE

FORMAT:

MODE:

HEX$(a)

(a$ is a decimal number less
than 65536)

DIRECT and PROGRAM

This co~nand will help you to easily
convert decimal numbers to their hexadecimal
equivalent. The decimal number can be either
a real number or a variable and it must be
enclosed in parentheses.

EXAMPLE # 1

PRINT HEX$(2744) <RETURN>

EXAMPLE # 2

A = 19 PRINT HEX$(A) <RETURN>

EXAMPLE # 3

10 INPUT"ENTER A VALUE";A
20 IF A>65535 THEN PRINT"BAD NUMBER":GOTO 10
30 PRINT HEX$(A) : GOTO 10

PAGE 32

Simore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: KEY

ALTERNATE: NONE

FORMAT: (SEE TEXT)

MODE: DIRECT and PROGRAM

The KEY co~nand is rather unusual in both
its function and format. It actually has
several uses, but all of the variations have
something to do with the operation of the
function keys. This section will explain
each of the uses of the KEY command as if
each was a separate command.

When you power-up your computer with
S'more installed, each of the eight function
keys is assigned a special function. The
various formats of the KEY command allow you
to turn-on, turn-off, examine and modify
these special functions.

FORMAT # 1: KEY <RETURN>

Typing KEY and pressing the return key
will list to the screen all of the special
functions that are currently assigned to the
function keys. Initially S'more assigns the
function keys the following special
functions, after power-up the KEY <RETURN>
command will list them as follows:

PAGE 33

Slmore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEY1, "KEY:" + CHR$ (13)
KEY2 , "RUN:" + CHR$ (13)
KEY3,"PRINT DS$:" + CHR$(13)
KEY4,"DISK" + CHR$(34)
KEY5,"LIST:" + CHR$(13)
KEY6,"OLD:" + CHR$(13)
KEY7,"CATALOG D0:" + CHR$(13)
KEY8,"AUTO 10"

Each function key stores a string of
characters and acts as an automatic typist,
when you press function key F5 the typist
will type the string of characters stored
there which is L-I-S-T and <RETURN>. (NOTE:
CHR$(13) is the same as the <RE'rURN> key.)
So pressing the F5 function key will
accomplish the same as typing the LIST
<RETURN> command. The following is a list of
what each function key will do when pressed:

Fl

F2
F3

- List the string
function key.

- Run the current
- Prints to the

values assigned to each

program in memory.
screen the current disk

drive error channel message.
F4 - prints DISK" to the screen.
F5 - List the current program in memory. ..
F6 - Performs the OLD function.
F7 - Prints to the screen the disk directory

of the disk in drive 0 of the current
device number.

F8 - Prints AUTO 10 to the screen.

PAGE 34

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

FORMAT # 2: KEY OFF <RETURN>

This
special
function
normally

command turns the function key
functions off and assigns the

keys the values of CHR$(l33-l40)
assigned under Commodore Basic.

FORMAT # 3: KEY ON <RETURN>

This command will turn the function key
special functions back on after they have
been turned off. The special functions will
be the same as those that were active at the
time the keys were turned off.

FORMAT # 4: KEY CLR <RETURN>

This command clears all of the special
functions that were assigned to the function
keys. After the KEY CLR command the function
keys will have the value of a "null" or
"empty" string.

.. FORMAT # 5: KEY NORM <RETURN>

This command will reset the function key
special functions to their starting values.
(IE: see the above list) The KEY NORM
command overrides any other KEY commands or
changes made to key functions.

PAGE 35

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

FORMAT # 6: KEY a,b$ <RETURN>

(a is the key 1 thru 8)
(b$ is any string up to 128
characters long. See text)

This is the command format that allows
you to re-define the special functions
assigned to the function keys. The total
amount of space reserved for function key
definitions is 128 bytes. You can use all
128 bytes for the definition of one key or
spread the space available among all eight
keys. Using the alternate forms of KEYWORDs
will allow you to pack more into your
definitions. If you have a set of
definitions that you find you are using a
lot, you can create a basic program (like the
one shown below), save it on disk and run it
whenever you want to use your special key
definitions.

05 I KEY DEFINITIONS
10 A$(1)="LIST"+CHR$(13)
20 A$(2)="SAVE"+CHR$(34)+"'0:WORK"+CHR$(13)
30 A$(3)="NUMBER"+CHR$(13)
40 A$ (4)= "NORM"+CHR$ (13)
50 A$(5)="CATALOG D0"+CHR$(13)
60 A$(6)="CATALOG Dl"+CHR$(13)
70 A$(7)="RUN"+CHR$(13)
80 A$(8)=CHR$(13)+"DATA"
90 FOR I = 1 to 8 : KEYI,A$(i) NEXT
99 NEW

PAGE 36

...

S" more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

You can even store a program and run it
as a function key definition.

KEY CLR <RETURN>

A$="0 INPUT"+CHR$(34)+"ENTER FILE NAME"+
CHR$ (34)+" iX$: RUNX$: "+CHR$ (13)

A$=A$+"RUN:"+CHR$(13)

KEY8,A$ <RETURN>

When F8 is pressed, this little program
will enter and run itself and ask you for the
name of the next program you want to load
from disk. It will then load and run the
requested program. If you saved this as one
of the KEY definitions in the previous
program you would have a neat auto boot
routine. How's that for power from one key
stroke?

In the following examples are some other
handy key definitions. Any time you find
yourself with an item that you type in
numerous times, you have a candidate for a
function key definition. Remember that you
can include any valid character in the key
definition string, including RETURN
(CHR$(13», CURSOR DOWN (CHR$(17), DELETE
(CHR$(20», CLEAR/HOME CHR$(147) and all the
rest of the control characters.

PAGE 37

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

EXAMPLE # 1

KEY8,"PRINT#8," <RETURN>

EXAMPLE # 2

KEY8,":FORI=0TO" <RETURN>

EXAMPLE # 3

KEY8,"GETA$:IFA$=CHR$(0)GOTO" <RETURN>

EXAMPLE # 4

KEY8, "CARD CO, Inc. "

EXAMPLE # 5

KEY8,CHR$(34)

EXAMPLE # 6

10 KEY OFF
20 'BODY OF YOUR PROGRAM
99 KEY ON : KEY NORM

PAGE 38

<RETURN>

<RETURN>

•

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

PART TWO

ONE LINERS

As the name of this section suggests,
the commands covered here are short but
sweet. These commands were all missing from
Commodore 64 Basic. In order to accomplish
these simple tasks, Commodore required you to
PEEK, POKE, SYS or do other unusual things
that aren't required on other less advanced
computers. Now, PEEK, POKE and SYS aren't
all that bad, if you have a good memory for
numbers and accurate typing fingers. But if
you miss by even one number, you don't get a
SYNTAX ERROR, you get a DISASTER. (NOTE:
Also see PART 9 - PEEKS AND POKES for more
information about PEEK and POKE commands and
locations.)

These easy-to-learn and easy-to-remember
cownands should speed up your programming and
prevent some terminal mistakes. Co~nodore is
including forms of most of these functions in
the C-128's new Basic 7.0.

PAGE 39

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWO RD : CLS

ALTERNATE: NONE

FORMAT: CLS

MODE: DIRECT and PROGRAM

The CLS command performs the simplest of
all functions, it clears the screen of your
video display.

NOTE: The CLS command also resets all of the
1000 SCREEN COLOR RAM locations to their
default value of Dark Grey (11).

EXAMPLE # 1

CLS <RETURN>

EXAMPLE # 2

10 DIM A$ (80) CLS PRINT "HELLO"

PAGE 40

..

...

Si more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: UPPER

ALTERNATE: U<SHIFTjP>

FORMAT: UPPER

MODE: DIRECT and PROGRAM

This command will not speed up your heart
rate. The UPPER command shifts the screen to
the UPPER CASE/GRAPHICS display mode. It
works just like the <SHIFT/COMMODORE> key
combination.

EXAMPLE # 1

UPPER <RETURN>

EXAMPLE # 2

10 CLS : UPPER PRINT "HELLO"

PAGE 41

Si more Basic - INSTRUCTION MANUAL

CARDCO , Inc. - (316) 267-6525

KEYWORD: LOWER

ALTERNATE: LO<SHIFT/W>

FORMAT: LOWER

MODE: DIRECT and PROGRAM

LOWER is the opposite of the UPPER
command. (Makes sense ... ed.) The LOWER
command will shift your screen display to the
UPPER/LOWER CASE display mode. It works just
like the <SHIFT/COMMODORE> key combination.

EXAMPLE # 1

LOWER <RETURN>

EXAMPLE # 2

10 CLS : LOWER PRINT "HELLO"

PAGE 42

S'more Basic INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

KEYWORD: REPEAT

ALTERNATE: RE<SHIFT/P>

FORMAT:

MODE:

REPEAT a$

(a$ is either ON or OFF)
(NOTE: quote marks not needed)

DIRECT and PROGRAM

S'more powers-up with the REPEAT function
OFF. Turning the REPEAT function ON allows
all keys to repeat when held down for more
than .6 seconds. Turning the REPEAT function
OFF allows only the cursor keys,
insert/delete and the space bar to repeat
when held down.

EXAMPLE # 1

REPEAT ON <RETURN>

EXAMPLE # 2

10 CLS : LOWER : REPEAT ON
20 INPUT "Enter The Header";A$
30 REPEAT OFF : UPPER

PAGE 43

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: NORM

ALTERNATE: NO<SHIFT/R>

FORMAT: NORM

MODE: DIRECT and PROGRAM

NORM clears the screen, and resets the
screen, border and cursor colors to their
original values. Border = Cyan (3): Screen =
White (1): Cursor = Dark Grey (11)

EXAMPLE # 1

NORM <RETURN>

EXAMPLE # 2

310 IF A$ = "Q" THEN NORM END

PAGE 44

..

s'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: STOP

ALTERNATE: S<SHIFT/T>

FORMAT: STOP [a$]

(a$ is either ON or OFF)
(NOTE: quote marks not needed)

MODE: DIRECT and PROGRAM

The normal Commodore 64 Basic function of
the STOP command (to stop program execution)
is still supported, but S'more adds an
additional function to this command. The
STOP OFF command will cause the RUN/STOP and
RESTORE keys to be de-activated. Unlike
previous methods of de-activating these keys,
STOP OFF does not interfere with the TI/TI$
function accuracy. STOP ON re-activates the
RUN/STOP and RESTORE keys.

EXAMPLE # 1

STOP ON <RETURN>

EXAMPLE # 2

10 STOP OFF : CLS
20 'BODY OF PROGRAM
99 IF A$ = "Q" THEN STOP ON

PAGE 45

NORM STOP

S"more Basic INSTRUCTION MANUAL

CARDCO , Inc. (316) 267-6525

KEYWORD: RESET

ALTERNATE: NONE

FORMAT: RESET

MODE: DIRECT and PROGRAM

The RESET command will cause a system
reset. The reset is a warm start type system
reset. Screen and border colors are reset,
and the screen looks like you just turned the
computer on.

EXAMPLE # 1

RESET <RETURN>

EXAMPLE # 2

10 STOP OFF : CLS
20 'BODY OF PROGRAM
99 IF A$ = "Q" THEN RESET

PAGE 46

..

S'more Basic - INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

KEYWORD: MONITOR

ALTERNATE: M<SHIFT/O>

FORMAT: MONITOR

~10DE : DIRECT and PROGRAM

This command should be used when you have
a Machine Language Monitor program loaded and
initialized. The MONITOR command will cause
a BRK to be executed and will jump to the
location indicated by the monitor.

NOTE: We have
monitor on the
cartridge.

EXAMPLE # 1

provided
disk that

a public domain
comes with this

MONITOR <RETURN>

EXAMPLE # 2

45 IF A$ = "M" THEN MONITOR

PAGE 47

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. -

KEYWORD: BORDER

ALTERNATE: B<SHIFTjO>

FORMAT: BORDER = a
or

a = BORDER

(316) 267-6525

(a is any value 0 - 15)

KEYWORD: PAPER

ALTERNATE: P<SHIFTjA>

FORMAT: PAPER = a
or

a = PAPER

(a is any value 0 - 15)

KEYWORD: INK

ALTERNATE: NONE

FORMAT:

MODE:

INK = a
or

a = INK

(a is any value 0 - 15)

DIREc'r and PROGRAM

PAGE 48

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

All three of these commands work exactly
the same way. These commands are provided as
quick and easy ways to change the border,
screen and cursor colors. BORDER refers to
the color of the border, PAPER is the screen
color and INK is the character color (or
cursor color). BORDER, PAPER and INK are
treated as variables within S'more, so you
can do anything with them that you would do
with any other numeric type variable. They
can be used in the direct mode for example:

BORDER=4 <RETURN>

The above direct statement will change
the border color to color # 4 (which, by the
way, is purple) and assign the value of 4 to
the variable BORDER. If you should want to
know what color the border is (maybe you're
color blind) use the direct statement as
follows:

PRINT BORDER <RETURN>

If the border color was 4, as assigned in
• the previous example, your computer will

print the number 4 on the screen, thereby
telling you that the variable border is
assigned the value of 4. Again, remember to
think of BORDER, PAPER and INK as numeric
variables, and the values of the variables
will always be equal to the appropriate
color.

PAGE 49

S" more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

BORDER, PAPER and INK can also be used as
variables in the program mode. You can
assign a new value to the variable to change
the color of the border or use the value of
the variable BORDER just as you would use the
value of any other variable. Here are
several examples of using BORDER as a
variable within a program.

EXAMPLE # 1

10 CLS : PRINT "ENTER A NUMBER (0-255)"
20 INPUT A : IF A > 255 THEN GOTO 10
30 BORDER = A : GOTO 10

EXAMPLE # 2

10 IF BORDER=3 THEN BORDER=4

EXAMPLE # 3

10 PRINT STR$(BORDER)

EXAMPLE # 4

10 BORDER = BORDER + 1
20 PAPER = PAPER +1

ELSE BORDER=3

30 IF PAPER = 15 THEN PAPER = 0 : GO TO 50
40 FOR I = 0 TO 50 : NEXT : GOTO 20
50 IF BORDER = 15 THEN BORDER = 0
60 GOTO 10

PAGE 50

Slmore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

NOTE: BORDER, PAPER, and INK can't be used as
the objects of a basic command either within
or outside of a program. For example INPUT
BORDER will not work! You should use the
format INPUT A : BORDER = A

NOTE: The value of BORDER, PAPER or INK will
always be a whole number from 0 to 15
inclusive. BORDER, PAPER and INK will accept
values from 0 to 255. A number greater than
255 will give you an ILLEGAL QUANTITY ERROR.
Using a statement like BORDER = 255 will not
set the value of BORDER equal to 255. The
VALUE of BORDER will always be less than 16.
If you set BORDER to equal a value greater
than 16, S'more will divide the value by 16
and set BORDER equal to the remainder. For
example, BORDER = 33 will result in the value
of border being set to the remainder of the
equation 33/16 which is 1.

PAGE 51

S'rnore Basic INSTRUCTION MANUAL

CARDCO , Inc. (316) 267-6525

PART THREE

DiskQuick

The commands in this section will all
deal with quicker, better and/or easier ways
to get information into and out of your disk
drive. Commodore 64 Basic's built-in
limitations in this area are a real problem
for most programmers. Doing simple things
like reading a directory from a disk were
tedious and time consuming.

S'more will not solve all of the problems
with Commodore disk drive access, but it will
eliminate most of the tedious programming
required to perform most disk related
operations.

PAGE 52

...

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (3I6) 267-6525

KEYWORD: CATALOG

ALTERNATE: C<SHIFT/A?

FORMAT:

MODE:

CATALOG [Da [,Ub]]
or

CATALOG [Da [ON Ub]]
(a is the drive number 0 or 1)
(b is the device number 8 to 15)
Defaults: a=0, b=8

DIRECT and PROGRAM

The catalog command can be used to print
the directory of the current disk in the
drive/device specified to either the screen
or to your printer (to print to the printer
use OPENx, 4: C~1Dx: CATALOG).

EXAMPLE # 1

OPEN4,4 CMD4 CATALOG <RETURN>

EXAMPLE # 2

CATALOG Dl,U9 <RETURN>
or

CATALOG Dl ON U9 <RETURN>

EXAMPLE # 3

10 GETA$:A=VAL(CHR$(A$»: 'GET DEVICE #
20 IFA<8THENGOT010: 'BETWEEN 8 OR 9
30 CATALOG D0,UA:GOT010

PAGE 53

Si more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: LOAD

ALTERNATE: L<SHIFT/O>

FORMAT: LOAD a$ [, b [, c]]

KEYWORD: SAVE

ALTERNATE: S<SHIFT/A>

FORMAT: SAVE a$ [, b [,e]]

KEYWORD: VERIFY

ALTERNATE: V<SHIFT/E>

FORMAT: VERIFY a$ [/b [,e]]

FOR ALL OF THE ABOVE COMMANDS:

MODE:

(a$ is the filename)
(b is the device number 1-15) ..
(c is the secondary address 0-2)
Default: b=8 : c=0

DIRECT and PROGRAM

PAGE 54

..

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

All of the normal disk commands listed
have been given the default value of 8 for
the device number so you don't need to type
,8 whenever you want to verify, save or load
a program. The cassette can still be used,
but you must specify the device number of ,1
to access the cassette.

The <SHIFT/RUN-STOP> key combination will
now load and run the first program on your
disk drive, instead of the cassette.

These commands will also ignore anything
following the filename that is not preceded
by a comma. This will allow you to list a
directory, move your cursor to the line
listing the program you want to load, type
LOAD and press return.

EXAMPLE # 1

LOAD "DEMO" PRG

EXAMPLE # 2

20 LOAD"TEST":'FROM DISK

EXAMPLE # 3

9999 SAVE I '0:MYPROG I :VERIFY I MYPROG"

PAGE 55

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: RUN

ALTERNATE: R<SHIFTjU>

FORMAT:

MODE:

The
Commodore
starting
supported

RUN [a]
or

RUN [a$ [,b [,c]]]
(a is the starting line number)
(a$ is the filename to run)
(b is the device number 1-15)
(c is the secondary address 0-1)

DIRECT and PROGRAM

first format shown is the standard
64 Basic RUN command with the

line number option. This format is
by S'more.

The second format shown includes the
program name, device number and secondary
address options. This format allows you to
specify a program and source (disk/tape
device number) to be loaded and run. This
command will also ignore anything following
the filename that is not preceded by a comma.
This will allow you to list a directory, move
your cursor to the line listing the program
you want to run, type RUN and press return.

PAGE 56

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

The RUN command can also be used from
within a program to load and run another
program. Using one main menu program and
including a RUN"MENU" statement at the end of
each of the programs on the menu you can
create a self contained system. (See the
example below.)

EXAMPLE * 1

RUN "MENU"

EXAMPLE * 2

RUN "PROGRAM" ,9

EXAMPLE # 3

10 CLS : PRINT " SELECT A GAME TO PLAY"
20 PRINT PRINT "1. NOMAD"
30 PRINT PRINT "2. LOST IN HEAVEN"
40 PRINT PRINT "3. MINE DISASTER"
50 PRINT PRINT "4. TIC TAC TOE

" 60 PRINT PRINT "5. MONOPOLY
70 PRINT PRINT "6. BLACKJACK
80 PRINT PRINT "7. ROULETTE
90 PRINT PRINT "8. MONGOLIAN NERDS
100 GET A$: RUN A$

NOTE: Programs saved under program names "1"
(for NOMAD) I " 2" (for LOST ...) I etc.

PAGE 57

Simore Basic INSTRUCTION MANUAL

CARDCO , Inc. (316) 267-6525

KEYWORD: MERGE

ALTERNATE: M<SHIFT/E>

FORMAT:

MODE:

MERGE a$ [,b]

(a$ is the filename to be merged)
(b is the device number 1-15)
Default: b=8

DIRECT

The lv1ERGE command allows you to combine
(or merge) a program stored on disk or tape
with the program in memory. MERGE does a
complete inter-locking combining of the two
programs. If one program contains lines I,
3, 7 & 20; and the other contains 2, 6 & 16;
the resulting program will have lines I, 2,
3, 6, 7, 16 & 20.

NOTE CAUTION: If a line with the same line
number exists in both programs, the line from
the program merged (from disk or tape) will •
replace the existing line from the program in
memory.

PAGE 58

..

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

NOTE: This form of combining programs can be
time consuming. With large programs it can
require several minutes to complete the
merge, even after the disk drive (or
cassette) has stopped running. It is faster
to load the larger of the programs into
memory and then MERGE the shorter program
into the longer one.

EXAMPLE # 1

MERGE "SCREEN FORMAT" <RETURN>

EXAMPLE # 2

MERGE "UTILITY",9 <RETURN>

EXAMPLE # 3

MERGE "FROM TAPE",l <RETURN>

PAGE 59

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: DISK

ALTERNATE: DI<SHIFT/S>

FORMAT:

MODE:

DISK a$ [,b]

(a$ is any valid disk command)
(b is the device number)

DIRECT and PROGRAM

The DISK command eliminates the constant
opening and closing of the command channel
(OPEN15,x,15) to the disk drive that is
required by Commodore 64 Basic. The DISK
command replaces OPEN 15,b,15,a$:CLOSE 15

EXAMPLE # 1

To format a disk with Commodore Basic

OPEN 15,8,15,IN0:MYDISK,MD" : CLOSE 15

The same co~nand with S'more

DISK "N0:MYDISK,MD"

In the program mode you never have to
worry about leaving the command channel open
accidentally and getting a FILE OPEN error.
(See the following example.)

NOTE: DISK will not close or interfere with
any open channels to the disk drive.

PAGE 60

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

EXAMPLE # 2

10 CLS PRINT: PRINT DS$: PRINT : PRINT
"SELECT FUNCTION:"

20 PRINT PRINT "1. SEE DIRECTORY"
30 PRINT PRINT "2. INITIALIZE DRIVE"
40 PRINT PRINT "3. FORMAT A DISK
50 PRINT PRINT "4. DELETE A FILE
60 PRINT PRINT "5. RENAME A FILE
70 GET A$: ON VAL(A$)+l GOTO 70, 80, 90,

100, 130, 150 : GOTO 70
80 CLS : CATALOG : GOT0300
90 A$ = "10" : GOTO 200

100 PRINT: INPUT" ENTER NAME OF DISK "iN$:
IF LEN(N$) > 15 THEN GOT0100

110 PRINT: INPUT" ENTER DISK ID # "iI$:
IF LEN(I$) <> 2 THEN GOTOl10

120 A$="N0:" + N$ + "," + 1$: GOTO 200
130 PRINT : INPUT" ENTER NAME OF FILE "iN$:

IF LEN(N$) > 15 THEN GOT0130
140 A$= "S0:" + N$: GOTO 200
150 PRINT: INPUT" ENTER OLD FILENAME"iO$:

IF LEN(O$) > 15 THEN GOT0150
160 PRINT: INPUT" ENTER NEW FILENAME"iN$:

IF LEN(N$) > 15 THEN GOT0160
170 A$= "R0:" + N$ + "=0:" + 0$
200 DISK A$: CLS : PRINT : MS$ = DS$

CATALOG : PRINT : PRINT MS$
300 GET A$: IF A$ = "" THEN GOTO 300
400 GOTO 10

NOTE: This program will be also be found on
the disk that is included with S'more.
LOAD"DISKQUICK"

PAGE 61

Simore Basic

CARDCO, Inc.

KEYWORD: OS

ALTERNATE: NONE

FORMAT: PRINT DS
or

A = DS

KEYWORD: OS$

ALTERNATE: NONE

FORMAT: PRINT DS$
or

A$ = DS$

INSTRUCTION MANUAL

(316) 267-6525

MODE: DIRECT and PROGRAM

Using the DS and DS$ functions will give
you quick access to the DOS error messages
from the disk drive error channel. The DS
and DS$ functions eliminate the need to OPEN
the drive error channel and then INPUT the
error message. DS itself is treated like a
reserved variable in S'more Basic. DS$ is
treated like a reserved string variable. DS
will always be equal to the current drive
error number and DS$ will always be equal to
the current drive error message. A listing
of the DOS error numbers and messages and
their meanings can be found in the
information contained in your disk drive
operating manual.

PAGE 62

,

S'more Basic INSTRUCTION MANUAL

CARDCO , Inc. (316) 267-6525

Remember that each time you use the
DS/DS$ function, S'more reads the DOS error
message. Any other disk command will clear
the error channel. One method to retain the
value of DS/DS$ for later use is shown in the
EXAMPLE # 2 program for the DISK command.
(See line number 200; MS = DS)

NOTE: One very important benefit of the DS
and DS$ functions is that they CAN be used in
the DIRECT mode, unlike standard Commodore 64
Basic which has no provisions to read the
disk drive error channel in the DIRECT mode.

EXAMPLE # 1

PRINT DS$ <RETURN>

EXAMPLE # 2

10 A=DS: REM - READ DOS ERROR CHANNEL
20 IF A <> 0 THEN PRINT "DISK ERROR" DS$

PAGE 63

S'more Basic INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

KEYWORD: DOPEN#

ALTERNATE: DO<SHIFT/P>

FORMAT:

MODE:

DOPEN#a,b,c,d$,e

(a is the logical file number)
(b is the device number)
(c is the secondary address)
(d$ is the filename)
(e is the relative file length)

DIRECT and PROGRAM

The DOPEN# corr~and is used for creating
relative files. The command format requires
the following information:

1. A logical file number between 1 and 127.
You may have only one file with this
logical file number open at anyone time,
but you may have several files open with
different logical file numbers at the same
time.

2. A device number between 8 and 15 for the
disk drive desired.

3. A secondary address between 2 and 14.

4. The file name of the file to be used.

5. The record length for the records in the
file between 2 and 254.

PAGE 64

Simore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

For a complete explanation of relative
files and their uses we recommend that you
refer to the section on relative files in the
manual that was supplied with your disk
drive.

The DOPEN# command may be used in place
of the normal Commodore OPEN command.

EXAMPLE # 1

To open a relative file with a record length
of 200 characters in Commodore 64 Basic:

100PEN8,8,8,"RELATIVE,L"+CHR$(200)

To open a relative file with a record length
of 200 characters with S'more:

10 DOPEN#8,8,8,"RELATIVE",200

NOTE: Use RECORD# (next page) to
information within relative files

access

NOTE: After the relative file exists, the
normal OPEN8,8,B,"FILE" command format may be
used to access the file.

PAGE 65

Simore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: RECORD#

ALTERNATE: RE<SHIFT/C>

FORMAT:

MODE:

RECORD#a,b [,c]

(a is the logical file number)
(b is the record number)
(c is the pointer to the position
within the record to start at.)

Default: c=0

DIRECT and PROGRAM

The RECORD# command is used to access
individual records within relative files.
The logical file number refers to the logical
file number assigned to the file when it was
opened using the DOPEN# command (See DOPEN#).
The record number refers to the record number
of the record within the logical file that
you wish to access. A relative file on a
1541 Commodore drive may contain up to 720
individual records. (See the manual that
came with your disk drive for limits on the
number of records available.) A record may
be (as you declared in the DOPEN#'s record
length parameter) up to 254 characters long,
the pointer value allows you set the pointer
to any desired start position within the
record for the next read or write function to
that record.

PAGE 66

Simore Basic INSTRUCTION MANUAL

CARDeo. Inc. - (316) 267-6525

Once you have set up the file and record
using the DOPEN# and RECORD# commands you can
now put data in the record or retrieve data
from the record using the standard PRINT#,
GET#, and INPUT# statements. See the
appendix of this manual for a program (the
program is also on the disk that comes with
S'more, LOAD"MAIL") that demonstrates the use
of relative files to do a mailing list.

EXAMPLE # 1

20 RECORD#8,37

* Finds the 37th record in the file.

EXAMPLE # 2

20 RECORD#8,25,10

* Finds the 25th record in the file and
sets the pointer to the 10th character
in the record.

EXAMPLE # 3

100PEN#3,9,3,"LIST"
20 FOR I = 0 TO 99
30 RECORD#3,I : A$(I) = ""
40 GET#3,A$: A$(I) = A$(I) + A$
50 IF A$ <> CHR$(13) THEN GOTO 40
60 NEXT : CLOSE3

PAGE 67

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

PART FOUR

OUT WITH STYLE

The commands in this section will let you
print, print-out and output information with
a lot more ease than Commodore 64 Basic.
These commands specifically control screen
and printer output formatting functions. As
you will see creating attractive, easy-to-use
screens and reports need not be a
time-consuming chore.

Printing neatly organized and formatted
output to your screen and printer will become
a relative easy task with S'more's powerful
printing commands. Spending a little extra
time learning to use the commands in this
section will be a valuable investment of your
time.

PAGE 68

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: AT

ALTERNATE: CHR$(I)

FOR~1AT :

MODE:

AT a, b
or

CHR$(l)CHR$(a)CHR$(b)

(a is the row (0 to 24»
(b is the column (0-39»
Defaults: a=0 : b=0

DIRECT and PROGRAM

The AT command is used to place the
cursor at the desired position on your
screen. The AT command can only be used with
statements that print to the screen. (IE.
PRINT AT, INPUT AT and INFORM AT, INLINE AT,
which will all be discussed in this
section.)

There are two formats for the AT command.
The first is simple enough, the KEYWORD AT is
followed by two decimal numbers representing
the row and column desired as the cursor
position. For example:

PRINT AT 20,2 "PRESS ANY KEY" <RETURN>

This command will print the statement
"PRESS ANY KEY" at the 3rd print position (0
is the 1st print position) on the 21st line
(0 is the 1st line) of the screen.

PAGE 69

S'more Basic - INSTRUCTION MANUAL

CARnCO, Inc. - (316) 267-6525

Multiple AT statements can be used. For
example:

50 A=3 : B=3 : C=18 : D=13
60 PRINT AT A,B "HERE" AT C,D "THERE"

The alternate format of the AT command is
available only with the PRINT command, and
has been provided to allow you to send the AT
command as part of a string, for example:

30 A$=CHR$(l) : B$=CHR$(2) : C$=CHR$(0)
D$=CHR$(25)

40 PK$=A$+D$+B$"PRESS ANY KEY"+A$+C$+C$
50 PRINT PK$

Remember, the examples of the AT command
shown here used with the PRINT command can
also be used with the INPUT, INLINE and
INFORM commands described later in this
chapter.

EXAMPLE # 1

10 CLS : FOR I = 0 TO 20
20 PRINT AT 1,0 I : NEXT
30 FOR I = 0 TO 20
40 PRINT AT 1,4 LEFT$(A$(I),l4): NEXT
50 FOR I = 0 TO 20
60 PRINT AT 1,20 1+20 : NEXT
70 FOR I = 0 TO 20
80 PRINT AT 1,24 LEFT$(A$(1+20),14): NEXT

PAGE 70

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

EXAMPLE # 2

10 DIM P$(39),Q$(7,99) : FOR I = 0 TO 39 :
P$(I) = CHR$(I) : NEXT

20 Q$=CHR$(0)+CHR$(1)+CHR$(0)+"ENTER * TO
END DATA ENTRY"

• 30 Q$=CHR$(0)+CHR$(1)+CHR$(0)+"==========

•

============== II
40 Q$(0)=P$(0)+P$(3)+P$(0)+"FIRST NAME: "+Q$
50 Q$(1)=P$(0)+P$(5)+P$(0)+"LAST NAME: "+S$
60 Q$(2)=P$(0)+P$(7)+P$(0)+"ADDRESS:
70 Q$(3)=P$(0)+P$(9)+P$(0)+"CITY:
80 Q$(4)=P$(0)+P$(9)+P$(29)+"STATE:

"
"
"

90 Q$(5)=P$(0)+P$(11)+P$(0)+"ZIP CODE: "
100 Q$(6)=P$(0)+P$(13)+P$(0)+"TELEPHONE: "
110 Q$(7)=P$(0)+P$(15)+P$(3)+"NOTES: "+

P$(0)+P$(17)+P$(0)
120 L(0)=24:L(1)=24:L(2)=24:L(3)=15:L(4)=2

L(5)=11:L(6)=14:L(7)=80:
130 FOR II=0T099 : CLS
140 FOR I=0T07 : PRINT Q$(I) : NEXT
150 FORI=0T07: PRINTQ$(I)i: INFORMiLEN(L(I):

Q$(I,II)
160 IF Q$(0,II) = "*" THEN I=8 : N= II :

II=100 : NEXT : NEXT : GOTO 300
170 NEXT
180 PRINT AT 21,2"PRESS * IF ALL CORRECT"
190 PRINT AT 23,2"PRESS SPACE BAR TO MAKE

CORRECTIONS"i:GETKEY A$
200 IF A$ = "*" THEN NEXT : GOTO 300
210 GOTO 130

NOTE: This is a complete formatted data input
screen. With a little modification it could
be used for any type of data entry.

PAGE 71

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: USING

ALTERNATE: US<SHIFT/I>

FORMAT:

MODE:

USING a$; b[$] [,c[$] , .. etc]
{a$ is the FORHAT STRING (See
the text for details)

(b[$] can be any numeric or
string variable)

(c[$] ... etc can be a list of
numeric or string variables)

DIRECT and PROGRAM

THE USING command must follow a PRINT or
PRINT#, command. For example all of the
following variations are valid commands:

PRIN'r USING A$; B
or

PRINT US<SHIFT/I/ A$;B
or

? USING A$;B
or

? US<SHIFT/I> A$;B
or

PRINT#l, USING A$;B
or

PRINT#l, US<SHIFT/I> A$;B
or

P<SHIFT/R>l, USING A$;B
or

P<SHIFT/R>l, US<SHIFT/I> A$;B

PAGE 72

I

,

S"rnore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

The USING command provides a simple means
to print formatted data to the screen,
printer, disk or other device. If you wanted
to print out a list of numbers on the screen
with all of the decimal points aligned, this
would be an easy task for the USING command.
Understanding and using the USING command
will save you huge amounts of time and
memory. It will be impossible to cover all
of the many possible uses for the USING
command in this manual, but the examples and
recommended uses included here will give you
some idea of the potential of this extremely
powerful command.

First you must understand how the command
works. The format of the USING command
requires you to provide a string variable
called the FORMAT STRING. The FORMAT STRING
is a group of literal and special characters,
each with a special meaning, that define a
format (think of the it as a template or a
mold) that the item(s) you want printed are
put into. Within the template, the special
characters can reserve places for one or
several items. Each of the places reserved
by the special characters is called a FIELD.

PAGE 73

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

The special characters that are reserved
for use within the USING statement are:

POUND SIGN or <SHIFT/3>
GREATER THAN SIGN or <SHIFT/.>
EQUAL SIGN
PLUS SIGN
MINUS SIGN
DECIMAL POINT
COMMA
DOLLAR SIGN or <SHIFT/4>
FOUR CARETS (UP ARROWS)

#=
>
=
+

,
$

All of the other characters are treated
as literal or real characters. That is, if a
literal character is included in a FORMAT
STRING it is printed exactly where and as it
is in the FORMAT STRING. To understand this
concept fully you must first understand what
a special character is and does.

* USING WITH STRINGS

SPECIAL CHARACTER (I)

The simplest to understand and most used
special character is the NUMBER (#) or
<SHIFT/3». The NUMBER (#) sets aside space
(called a FIELD) in your FORMAT STRING for
one character. So if you define a FORMAT
STRING as A$="#####" you would have a FIELD
five (5) characters long. If you then
printed something USING A$, whatever you
print would be exactly five (5) characters

PAGE 74

1

,

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

long. When USING is asked to print an item
that is shorter than the FIELD reserved for
it in the FORMAT STRING, it adds filler
characters (which by the way can be defined
to be any character, but default to blank
spaces unless redefined - See PUDEF) to make
up the difference. If the item is too long,
it is simply truncated (chopped off) to fit.
Here are some examples (remember this is
starting at the simplest level) of how USING
would print various data:

EXAMPLE # 1

PRINT USING "#####"; "DATA" <RETURN>

RESULT:

DATA (followed by one space)

EXAMPLE # 2

PRINT USING "#####";"HI" <RETURN>

RESULT:

HI (followed by three spaces)

EXAMPLE # 3

PRINT USING "##### "; "HOLLYWOOD" <RETURN>

RESULT:

HOLLY

PAGE 75

Slmore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

Well that's only a start, but be sure you
understand the concept before going on.

Now remember that you can print as many
items as you want with the USING command, for
example:

EXAMPLE # 1

PRINT USING "##";"A",BC",DEF" <RETURN>

RESULT:
A BCDE

NOTE: The Blank space after A.

EXAMPLE # 2

110 US$ = "####"
210 A$="A": B$="BC": C$="DEF: D$="GHIJ":

E$="KLMNO": F$="PQRSTU"
310 PRINT USING US$;A$,B$,C$,D$,E$,F$

RESULT:
A BC DEF GHIJKLMNPQRS

NOTE: Three blank spaces were added to A$
("A"), two to B$ ("BC"), and one was added to
C$ ("DEF"), D$ was left unchanged and E$ and
F$ were truncated to be only four characters
long "KLMN" and PQRS" respectively.

PAGE 76

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

SPECIAL CHARACTER (»

There are several other things that the
USING co~nand does with strings. You can
request that the USING command print strings
right justified. To right justify a string
the USING command fills in the FIELD in the
FORMAT STRING with spaces at the beginning of
the string instead of the end. To tell the
USING command to right justify a string use
the special character GREATER THAN (» or
«SHIFT/.» as part of your FIELD definition
within the FORMAT STRING. Remember that
GREATER THAN (» is counted by USING when
determining the FIELD length. (I. E. "## > # "
has a FIELD length of four (4) characters.)
The following example uses the same
information as the last example but will
right justify the strings:

10 US$ = "#>##"
20 A$="A": B$="BC": C$="DEF: D$="GHIJ":

E$="KLMNO": F$="PQRSTU"
30 PRINT USING US$~A$,B$,C$,D$,E$,F$

RESULT:

A BC DEFGHIJKLMNPQRS

NOTE: Three blank spaces were added in front
of the A in A$, two in front of the "BC" in
B$, one in front of the DEF in C$, D$ was
again left unchanged and E$ and F$ were still
truncated to be only four characters long
"KLMN" and PQRS" respectively.

PAGE 77

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

SPECIAL CHARACTER (=)

USING can also center an item within a
FIELD by use of EQUAL (=). As with right
justification, if the length of the string is
less than the length of the defined FIELD,
USING adds spaces to the string until it is
the desired length. USING starts by adding a
space to the right of (behind) the string,
then checks to see if the string is long
enough. If it is still too short, USING adds
a space to the left (in front) of the string.
This process goes on until the string reaches
the desired length. For example:

EXAMPLE

10 US$="###=####":' FIELD LENGTH OF 8
20 READ A$: PRINT USING USiA
30 IF LEN(A$) < 10 THEN GOTO 20
40 DATA A,AB,ABC,ABCD,ABCDE,ABCDEF
50 DATA ABCDEFGH,ABCDEFGHI,ABCDEFGHIJ

RESULT:

A (followed by 4 spaces)
AB (followed by 3 spaces)

ABC (followed by 3 spaces)
ABCD (followed by 2 spaces)

ABCDE (followed by 2 spaces)
ABCDEF (followed by 1 space)

ABCDEFG (followed by 1 space)
ABCDEFGH (leading space added)

ABCDEFGHI (unchanged)
ABCDEFGHI (truncated)

PAGE 78

S" more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

LITERAL CHARACTERS

Hopefully, by now, you understand the
concept that a FIELD is an area within a
FORMAT STRING that is reserved for
information that you want printed in a
certain format. Literal characters on the
other hand are printed exactly as they appear
in the format string. For example:

EXAMPLE # 1

10 US$="HELLO ########"
20 A$="BILL": B$="MICHELLE"
30 PRINT USING US$:A$
40 PRINT USING US$:B$

RESULT:

HELLO BILL
HELLO MICHELLE

EXAMPLE # 2

10 US$="ORIENT########"
20 A$="S": B$="ED" : C$="ATION"
30 PRINT USING US$:A$
40 PRINT USING US$:B$
50 PRINT USING US$:C$

RESULT:

ORIENTS
ORIENTED
ORIENTATION

PAGE 79

S" more Basic - INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

EXAMPLE # 3

113 US$="THE ##=## BALL"
213 A$="RED": B$="BLUE" C$="BLACK"
313 PRINT USING US$;A$
413 PRINT USING US$;B$
50 PRINT USING US$;C$

RESUL'r:

THE RED BALL
THE BLUE BALL
THE BLACK BALL

Literal characters also serve as FIELD
separators within a FORMAT STRING. You can
construct FORMAT STRINGs up to 254 characters
long that use many variables in this manner.
For example:

EXAMPLE # 1

113 US$="NAME: ############# "
213 US$=US$+"ADDRESS: ################ "
30 US$=US$+"#>########### ## #####"
413 READ N$,A$,C$,S$.Z$,X$
513 PRINT USING US$;N$,A$,C$,S$,Z$
613 IF Z$= "" THEN GOTO 40
70 DATA Thomas Bill,123 Here St,Heroville,

ME,01223,
80 DATA Thornton Sue,9999 Some St,Oakton,IL,

6136137,
913 DATA Clemente David,1212 Cottonwood Dr,

Wichita,KS,67212J7,-

PAGE 813

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

RESULT:

NAME: Thomas Bill ADDRESS: 123 [jere St.
NAME: Thornton Sue ADDRESS: 9999 Some St
N./\ME: Clemente Davi ADDRESS: 1212 Cottonwood

Heroville ME 01223
Oakton IL 60607

Wichita KS 67207

Remember that you can use any character
as a literal character. If you are printing
a form for example you could use characters
in the FORMAT STRING to print items in
reversed or double size type. You can even
include the <RETURN> character (CHR$(13»
like this:

EXAMPLE # 1

10 US$="NAME: ######################"+
CHR$ (13)

20 US$=US$+"ADDRESS: #####################"
+CHR$(13)+CHR$(13)

30 US$=US$+"#>########### ## #####"+
CHR$(13)+CHR$(13)

410 READ N$,A$,C$,S$.Z$,X$
510 PRINT USING US$;N$,A$,C$,S$,Z$
60 IF X$= "" THEN GOTO 40
70 DATA Thomas Bill,123 Here St,Heroville,

ME,01223,
80 DATA Thornton Sue,9999 Some St,Oakton,IL,

60607,
90 DATA Clemente David,1212 Cottonwood Dr,

Wichita,KS,67207,-

PAGE 81

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc.

RESULT:

NAME: Thomas Bill
ADDRESS: 123 Here St

Heroville ME 01223

NAME: Thornton Sue
ADDRESS: 9999 Some St

Oakton IL 60607

NAME: Clemente David

(3I6) 267-6525

ADDRESS: 1212 Cottonwood Dr

vVichita KS 67207

That covers all of the USING command's
special characters that are used with
strings. The variations presented here are
only a small part of the potential uses for
string manipulation with the USING command.
Let your imagination be your guide and
experimentation will provide many, many
useful variations for this very powerful
command.

PAGE 82

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

* USING WITH NUMBERS

SPECIAL CHARACTER (#)

As with string values, the NUMBER (#)
sets aside space (a FIELD) in your FORMAT
STRING for one digit. So if you define a
FORMAT STRING as A$="#####" you would have a
FIELD five (5) digits long. If you then
printed something USING A$, whatever you
print would be exactly five (5) digits long.
When USING is asked to print an item that is
shorter than the FIELD reserved for it in the
FORMAT STRING, it adds filler characters
(which can be defined to be any character,
but default to blank spaces unless redefined
- See PUDEF) to make up the difference.
Unlike strings however, USING always right
justifies numbers by adding the filler
characters (normally spaces) in front of the
number. If the item is too long, simply
chopping off the excess numbers to fit as is
done with string data would create a real
mess, so USING fills the area with *'s
(asterisks) to tell you that your number was
too big to fit. Here are some examples of
USING with numeric data:

PAGE 83

S'more Basic - INSTRUCTION ~~AL

CARDCO, Inc. - (316) 267-6525

EXAMPLE

10 A$="#####" : READ A
20 PRINT USING A$;A
30 IF A<>123456 THEN Gorro 20
40 DATA 1
50 DATA 12
60 DATA 123
70 DATA 1234
80 DATA 12345
90 DATA 123456

RESULT:

1 (led by 4 spaces)
12 (led by 3 spaces)

123 (led by 2 spaces)
1234 (led by 1 space)

12345

There are a couple of unexpected things
that happen with numeric values and the USING
command. For example try this:
EXAMPLE

PRINT USING "###";123,-123 <RETURN>

RESULT:

123

PAGE 84

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

Hhy did the negative value of the number
overflow and cause the asterisks to be
printed? Because the minus sign is part of
the number and there wasn't any place to put
it. There are two special characters
provided by USING to take care of this
situation.

SPECIAL CHARACTERS (+) & (-)

The PLUS (+) and MINUS (-) characters are
special characters that can be used to both
provide room for and define the location of
the sign (+/-) of a numeric value. If you
want a value to be printed in the traditional
format with a MINUS (-) preceding all
negative value numbers, but no PLUS (+)
preceding positive numbers, all you need to
do is put a MINUS (-) special character at
the beginning of the FIELD. For example:

EXAMPLE

PRINT USING "-###";123,-123 <RETURN>

RESULT:

123
-123

If you want to show the sign of all
values printed, you must use the PLUS (+)
special character as the first character of
the FIELD. For example:

PAGE 85

S"more Basic INSTRUCTION MANUAL

CARDCO , Inc. (316) 267-6525

EXAMPLE

PRINT USING "+###";123,-123 <RETURN>

RESULT:

+123
-123

If you want a value to be printed in the
traditional accounting type format with a
MINUS (-) trailing all negative value
numbers, but no PLUS (+) after the positive
numbers, all you need to do is put a HINUS
(-) special character at the end of the
FIELD. For example:

EXAMPLE

PRINT USING "###-";123,-123 <RETURN>

RESULT:

123 (with 1 trailing space)
123-

If you want the sign of all values to be
printed following the value, you must use the
PLUS (+) special character as the last
character of the FIELD. For example:

PAGE 86

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

EXAMPLE

PRINT USING "###+";123,-123

RESULT:

123+
123-

<RETURN>

The only thing that will cause you any
trouble with the +/- special characters is
the fact that you can only choose one option
for each FIELD. In other words you can't
have a PLUS (+) or MINUS (-) at both the
beginning and the end of the FIELD.

SPECIAL CHARACTER (.) (DECIMAL)

Here's another oddity to tryout:

PRINT USING "######";123.45 <RETURN>

RESULT:

123

~fuat happened to the .457 Well, USING
expects whole numbers unless you direct it to
do otherwise. If USING is expecting a whole
number and you supply a fractional value,
USING rounds off (this is a true rounding
function) to the nearest whole number before
it prints the value. Here are some examples
of how USING treats fractional values:

PAGE 87

S"more Basic INSTRUCTION MANUAL

CARDeo, Inc. - (316) 267-6525

EXAMPLE

10 US$="#####"
20 READ A: PRINT USING US$;A
30 IF A<>99999.5 THEN GOTO 20
40 DATA 5.4999,5.5
50 DATA 100.000001,100.99999
60 DATA 55555.111111,55555.9999999
70 DATA 99999.49,99999.5

RESULT:

5
6

100
101

55555
55556
99999

In fact, the only way to get USING to
print a fractional (decimal) value is to
place the DECIMAL (.) special character at
the point in the FIELD that you want the
decimal point to appear. If you place the
DECIMAL (.) special character in a FIELD,
USING will format numeric values according to
the following rules:

PAGE 88

Slmore Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

RULES FOR DECIMAL FIELDS

If there are too many digits,
including the minus sign if required,
on the left of the DECIMAL (.) to fit
in the space allotted in the FIELD,
the FIELD will be filled with
asterisks (*).

If extra digits exist to the right of
the DECIMAL (.), they will be
rounded to fit the space allocated in
the FIELD.

If there are no digits to the left of
the DECIMAL (.) a single ZERO (0)
will be added to the left of the
DECIMAL (.)

If there are not enough digits to the
left of the DECIMAL (.) to fill the
FIELD, spaces will be added to fill
out the FIELD.

If there are not enough digits to the
right of the DECIMAL (.) to fill the
FIELD, ZEROES (0) will be added to
fill out the FIELD.

PAGE 89

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

Some examples of the above rules should
help you to understand them better:

VALUE
1000
-100
999.9995
999.99949
100
-10
10
1
-.1
. 1
-.01
.01
.001
-.0001
.0005
.00049

FIELD
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###
###.###

SPECIAL CHARACTER (,) (COMMA)

RESULT

999.999
100.000
-10.000

10.000
1.000

-0.100
0.100

-0.010
0.010
0.001
0.000
0.001
0.000

The COMMA (,) special character can also
be used within a numeric field as shown:

VALUE FIELD RESULT

1234.56 #,###.## 1,234.56
234.56 #,###.## 234.56
1234567 #,###,### 1,234,567
34 #,###,### 34

PAGE 90

S" more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

SPECIAL CHARACTER ($) (DOLLAR)

The DOLLAR ($) special character can be
used in either of two ways. If the DOLLAR
($) is placed as the first character of a
FIELD, a FIXED DOLLAR SIGN ($) will be
printed in
For example:

VALUE

.01

. 1
10
100

that position with every value.

FIELD

$###.##
$###.##
$###.##
$###.##

RESULT

$ 0.01
$ 0.10
$ 10.00
$100.00

If the DOLLAR ($) is placed as the second
character of the FIELD, a FLOATING DOLLAR
SIGN ($) will be printed in front of every
number. For example:

VALUE

.01

.1
1
100

FIELD

#$##.##
#$##.##
#$##.##
#$##.##

RESULT

$0.01
$0.10
$1.00

$100.00

SPECIAL CHARACTER AAAA (FOUR CARETS)

The FOUR CARETS (~~~~) or (UP ARROWS ON
YOUR KEYBOARD) are used to signify that the
FIELD is to be printed using scientific

PAGE 91

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

notation. All of
FIELDS and decimal
FOUR CARETS (AAAA)

the rules for numeric
placement apply and the

must be the last
FIELD definition in the characters of the

FORMAT STRING.

For example:

VALUE FIELD

1000000 ##AA""
1000000 # A

1000000 #.#"'
-.000105 +#.#AAA

PRINT# AND THE USING COMMAND

RESULT

10E+05
lE+06

1.0E+06
-1.lE-04

The USING command can also be used with
the PRINT# command. The USING command will
therefore allow you to send formatted
information to any device on the serial bus.
The value of sending formatted information to
the printer is easy to realize, but most
people overlook the power USING adds to
relative files. By creating a FORMAT STRING
and using the USING command to print
information to a relative file you can be
sure that your data will never exceed the
record size space allocated by the relative
file LEN parameter. The USING command will
also allow you to precisely locate data
within each record, allowing easy access to
individual data items within each record by
using the position pointer parameter of the
RECORD# conunand.

PAGE 92

Slmore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: PUDEF

ALTERNATE: PU<SHIFT/D>

FORHAT:

HODE:

PUDEF "abcd"

(a is the filler character)
(b is the comma character)
(c is the decimal point)
(d is the leading dollar sign)
Default: a=" ":b=",":c=".":d="$"

DIRECT and PROGRAH

PUDEF is the command that allows you to
change some of the special characters used
within the USING command. PUDEF only affects
the USING command if the variable to be
printed is a numeric variable. If you lived
in England, you would probably want to use
the British Pound sign in place of the u.S.
Dollar sign. The four special characters
that can be redefined. They are the SPACE
(), COMMA (,), DECIMAL (.) and DOLLAR ($)
characters. As stated in the description of
the USING command, the SPACE () character is
used as a filler character to fill strings or
numbers to the proper FIELD size. PUDEF
allows you to change the SPACE () to be any
other keyboard character. Here is an example
of the PUDEF command being used to change the
SPACE () character to the ASTERISK (*)
character:

PAGE 93

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. -

EXAMPLE # 1

10 US$="##########" A
20 PRINT USING US$;A
30 PUDEF"*,.$"
40 PRINT USING US$;A

RESULT:

12345
*****12345

EXAMPLE # 2

(316) 267-6525

12345

10 US$="######.##" A=123.4
20 PRINT USING US$;A
30 PUDEF" ,:$"
40 PRINT USING US$;A

RESULT:

123.40
123:40

Any of the four special characters can be
redefined using the PUDEF command, by simply
placing the desired replacement character in
the position occupied by the character to be
replaced.

PAGE 94

S" more Basic INSTRUCTION MANUAL

CARDCO, Inc. (3I6) 267-6525

PART FIVE

IN STYLE

Commodore 64 Basic provides only two
comnands to get data from input devices like
your keyboard, disk drive and cassette. The
limitations of this lack of diversity make
some operations very difficult if not
impossible to accomplish.

The additional input commands provided by
S'more will allow you more flexibility in
constructing programs. The commands are
designed to allow you more control over both
the format and the contents of the data
received, while cutting substantially the
number of program statements required.

PAGE 95

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: INPUT

ALTERNATE: NONE

FORHAT:

MODE:

INPUT [AT a[,b]]: [c$:] d[$]

(AT a and b: See AT)
(c$ any text string in quotes)
(d[$] is the numeric or string
variable to be input)

PROGRAM

This command works just like the
Commodore 64 Basic INPUT command except that
it is able to use the AT command for
formatted location of the input. (See AT.)

NOTE: The bug in the Commodore 64 Basic
version of the command has been repaired in
the S'more version of the INPUT command.
Unlike the Commodore 64 Basic INPUT command,
S'more's version will not input the prompt as
part of the data if the data fills up the
line and is continued on the next line.

EXAMPLE '# 1

10 INPUT A
20 INPUT "NAHE: ": B$
30 INPUT "AGE: ": B
40 INPUT AT 7,2: "NAME: ": C$

PAGE 96

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: INLINE

ALTERNATE: NONE

FORMAT: INLINE [AT a[,b]]; [c$;] d$

(a and b See AT)
(c$ any text string in quotes)
(d$ is the variable to be input)

HODE: PROGRAM

Unlike the INPUT command,
accept a numeric variable in
the variable to be input,
string variables only.

EXAMPLE

10 INPUT A I THIS IS OK
20 INPUT A$: I THIS IS OK

INLINE will not
its format as
it works with

30 INLINE A : I THIS CAUSES A SYNTAX ERROR
30 INLINE A$: I THIS IS OK

INLINE will NOT provide the ? prompt that
INPUT does, it simply puts a flashing cursor
where it expects data to begin. INLINE also
accepts all characters including colons,
commas and quotation marks as part of the
inputted string variable. (No "EXTRA
IGNORED" error message is generated when
INLINE encounters a comma in the string data
received.) With INLINE it would be possible
to input Los "0" San, Ca. as one string

PAGE 97

S" more Basic INSTRUCTION MANUAL

CARDCO, Inc. (3I6) 267-6525

INLINE reads all characters from the
position the cursor first appears on the
screen to the end of the logical screen line.
Experimentation will provide the best
explanation as to how this works. Try the
following examples and see what happens:

Example

10 CLS : LOWER : REPEAT ON
20 PRINT AT A,B780-B-33:INLINEATA,B7

'****CHARACTERS tft.AY BE ENTERED : '7 A$
30 CLS : PRINT'HERE IS WHAT INLINE SAW

AS YOUR RESPONSE':
40 PRINT AT 6,07A$
50 INFORH AT 10,07 "rRY AGAIN (YiN): '7

LEN(1)7A$: IF A$='N'THEN NORH END
60 A=A+3 : IF A>24 THEN A=A-23
70 B=B+5 : IF B>39 THEN B=B-38
80 goto10

* NOTE: The *'s should be CURSOR LEFTS.

This program will prompt you for data
from many different screen locations, enter a
lot of characters, or enter only a few, and
see what happens. The program will prompt
you for a YES or NO to continue.

NOTE: There is a copy (LOAD"INLINE") of this
program on the disk that comes with your
S'more cartridge.

PAGE 98

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: INLINE:Jt

ALTERNATE: IN<SHIFT/L>

FORMAT: INLINE# a,b$

(a is the device number)
to input)

(b$ is the variable to get)

MODE: PROGRAM

The INLINE# command works just like the
INPUT# command from Commodore 64 Basic except
that INLINE# accepts all characters up to the
next carriage return (CHR$(13». INLINE#
does not recognize commas and colons as data
separators like the Commodore 64 BASIC input
command, it includes all characters as part
of the string inputted. INLINE# will input
string data to a maximum string length of 88
characters.

EXAMPLE

100PEN8,8,8,IFILE"
20 RECORD#8,32,22
30 INLINE#8,A$

NOTE: Using INLINE# with PRINT#
RECORD# pointer can provide
method of retrieving parts of
relative files.

PAGE 99

USING and the
a very quick
records from

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: INFORM

ALTERNATE: IN<SHIFT/F>

FORMAT:

r10DE:

INFORM [ATa[,b]][:c$]:LEN(d):e$

(a and b See AT)
(c$ any text string in quotes)
(d is the maximum length of the
string variable to be input, up
to a maximum of 80 characters)

(e$ is the variable to be input)

PROGRAM

INFORM is a special form of the input
command. As with INLINE, INFORM accepts
string variables only. But, the INFORM
command actually limits the input data string
to the number of characters specified in the
LEN (d) parameter of the INFORM command. When
the maximum length defined for the input
string is reached, INFORM will recognize only
the RETURN and DELETE keys, all other keys
will be ignored.

The INFORM command also locks out the
cursor direction keys, the comma, the quote
mark, the clear/home key, the insert key, the
shifted return key and all control key
combinations. If any of these keys are
pressed the INFORM statement simply ignores
them.

PAGE 100

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

Inform will accept up to 80 characters of
input as determined by the LEN(d) parameter.
The 80 characters might cover several lines
on your screen. There might be information
on some of those lines from previous program
activity, but UNLIKE the INPUT command,
INFORM will ignore any characters on the
screen and only accept characters from the
keyboard.

INFORM will allow you to construct very
controlled screen input routines, to prevent
many of the problems that cause programs to
fail when users of the program enter
unexpected data. See the MAIL program that
is on the disk that comes with S'more for
examples of some of the many uses and
variations of this command.

EXAMPLE

10 INFORM LEN(l)
20 INFORM "NAME: "iLEN(12(iN$
30 INFORM AT9,2iLEN(15)iA$
40 INFORM AT15, 2 i "ADDRESS: "i LEN (80) i AD$

PAGE 101

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: GETKEY

ALTERNATE: GETK<SHIFT/E>

FORMAT: GETKEYa$ [,b$ [,c$ [,more ...]]]

(a$ is a one character)
(b$ is a one character)
(c$ is a one character)

MODE: PROGRAM

The GETKEY command waits for a key to be
pressed and inputs the character. GETKEY
also allows you to GET several characters
with one command. So, the GETKEY command can
be used to replace several lines of code
normally used to GET single characters.

Commodore 64 Basic:

10 GET A$: IF A$ = 1111 THEN GOTO 10

Si more Basic

10 GETKEY A$

Commodore 64 Basic:

10 POKE 198,0
20 POKE 198,0

Si more Basic

10 GETKEY A$,B$

WAI'r 198,1
WAIT 198,1

PAGE 102

GET A$
GET B$

S'more Basic INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

PART SIX

TO ERR IS HUMAN

We all make mistakes, sometimes it is
even to our advantage to do things wrong. (I
hope you realize that statement refers to
programming errors not the morality of
living.) As we are all well aware, when your
Commodore 64 finds an error condition it
halts program operation. This mayor may not
be what the programmer intended or indeed
would prefer to happen.

For instance, what if you had a program
that figured averages for sales prices of
various items that you sold. But yesterday
you didn't sell any of one of the items.
Your program would have to divide nothing by
nothing and would halt operation by saying
DIVIDE BY ZERO ERROR. Wouldn't it be nice to
say "Ooops, I'm sorry machine, I know you
can't do that. But, would you please
continue with my program anyway so I can find
out what the rest of the prices were?"

By using the error
provided by S'more Basic,
your programs from coming
undesired crashing stop.

PAGE 103

handling routines
you can prevent

to an untimely and

Si more Basic INSTRUCTION MANUAL

CARDeo, Inc. (316) 267-6525

KEYWORD: TRAP

ALTERNATE: T<SHIFT/R>

FORMAT: TRAP a

(a is any program line number)

MODE: PROGRAM

TRAP is the command used to tell your
computer not to stop the program and display
the error message if an error occurs while
running the program. Instead of stopping
program execution TRAP causes the computer to
go to the program line number listed in the
TRAP command and continue program execution.

The TRAP function is turned on when your
computer executes the TRAP command during
program execution. TRAP with no line number
following it will turn off the TRAP function.
You may have several different error handling
routines in your programs, but only one TRAP
may be active at a time. If, for example you
had error handling routines at lines 1000 and
2000. TRAP 1000 would send all errors to
line 1000. If later in the program you had
TRAP 2000, that command would supersede the
previous TRAP command and send all errors to
line 2000. And, again, TRAP with no line
number listed would disable the TRAP
function.

PAGE 104

S'more Basic INSTRUCTION MANUAL

CARDeo, Inc. (316) 267-6525

Most commonly the TRAP command is used to
recover from errors caused by peripheral I/O
devices (ie: DEVICE NOT PRESENT ERROR) and to
prevent program crashes caused by bad data
inputs (ie: OVERFLOW, ILLEGAL QUAN'I'ITY,
STRING TOO LONG, etc.) The TRAP command can
also be very useful during programming and
de-bugging. You can even provide your own
customized error messages.

While TRAP will allow you to produce
CRASH-PROOF programs, don't let it become a
crutch for bad programming. The purpose of
TRAP is to divert the program, when an error
occurs, to a routine that takes, or prompts
the user to take, corrective action to fix
the problem. Most errors must be corrected
before program execution can resume. Some
errors can be ignored, but most of the time
data loss or program mis-function will happen
if the problem is not fixed. - That's why
they are called ERROR HANDLING ROUTINES.

WARNING: If a TRAP command refers to a
non-existent line number the program will not
notice it until an error occurs. When the
error occurs, program execution will halt and
the error message "UNEDF'D STATEMENT" will be
shown, no matter what the actual error was.
This can be a *#%?* to catch, so be careful
when assigning TRAP line numbers.

NOTE: An error in an error handling routine
can't be TRAPped, so double check your error
handling routines.

PAGE 105

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: ER

ALTERNATE: NONE

FORMAT: ER

KEYWORD: EL

ALTERNATE: NONE

FORMAT: EL

MODE: DIRECT and PROGRAM

ER and EL are reserved variables just
like TI, TI$, DS, DS$ and ST. Itfuen your
Commodore 64 encounters an error condition it
assigns ER a numeric value that corresponds
to the type of error found. (See ERR$(er) on
the next page for meanings of the values
returned by ER.) If there has been no error
encountered ER will contain a value of -1.
After an error, ER is reset to -1 after
execution of the next successful program
statement.

If an error has occurred, EL will be set
equal to the line number that the error
occurred in. If no error has happened, EL
will equal 65535.

PAGE 106

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: ERR$

ALTERNA'fE: NONE

FOR~1AT : ERR$(er)

(er is the error number - See ER)

MODE: DIRECT and PROGRAM

The ERR$(er) command is used to find out
what an error number as returned by the ER
command means. (There is a chart in the
appendix that lists the error codes as well.)
ERR$(er) will be set equal to the error
message that corresponds to the error
condition. You can then print the error
message. Or ERR$(x) can be used to print any
desired error message any place in your
program that you might like to include it by
putting the desired error number inside of
the parentheses.

EXAMPLE

PRINT ERR$(16) <RETURN>

RESULT:

OUT OF MEMORY

WARNING: Attempting to print an ERR$(-l) (ER
value when no error exists) will cause an
ILLEGAL QUM~TITY ERROR.

PAGE 107

Simore Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: RESUME

ALTERNATE: RES<SHIFT/U>

FORMAT: RESUME [NEXT]

MODE: PROGRAM

RESUME is the command that returns your
program execution to where it was when the
error occurred. After TRAP sends your
program to your error handling routine (and
hopefully you fix the problem), RESUME does
exactly what it says, it resumes program
execution right where it left off. RESUME
returns program to the same program statement
that caused the error condition. If your
error handling routine didn't take the proper
corrective action and the problem still
exists, TRAP will send it again to the error
handling routine, and RESUME will send it
back, creating a infinite loop, and therefore
a program crash. This is not the best
situation, so S'more gives you the RESUME
NEXT option.

RESUME NEXT directs program execution to
the first program statement after the
statement in which the error occurred. So
using RESUME NEXT, even if an error condition
can't be corrected, the program statement
causing it can be bypassed. The following
are some examples of possible error handling
routines:

PAGE 108

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

10 TRAP 500
20 OPEN 4,4 : PRINT#4,"PRINTER OK"

PRINT"PRINTER OK"
30 TRAP 600
40 OPEN 15,8,15,"10" CLOSE15 PRINT

"DISK DRIVE OK"
50 TRAP 700
60 PRONT"ERROR"
70 PRINT AD$(999)
80 BORDER=500
90 OPEN4,4 : PRINT#4,"ALL DONE"

399 END
400 TN=INK : INK=PAPER : CLS : PRINT"LIST"

EL" :GOTO 440:" : INK=TN
410 PRINT AT 7,0"* "ERR$(ER)" ERROR IN LINE"

EL : PRINT : PRINT X$: PRINT
420 PRINT"TRY AGAIN OR SKIP IT (Tis)"
430 POKE 198,2 : POKE 631,19 : POKE 632,13

END
440 GETKEY A$: IF A$=" S" THEN RESUME NEX'l'
450 RESUME
500 X$="WHERE'S YOUR PRINTER DUMMY?":

GOTO 400
600 X$="YOU FORGOT TO TURN YOUR DRIVE ON.":

GOTO 400
700 X$="O.K. WHAT DID YOU DO NOW, STUPID?":

GOTO 400

NOTE: This program is on the disk that comes
with S'more, LOAD"ERROR".

PAGE 109

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (3I6) 267-6525

PART SEVEN

DO •.. LOOP DIDDY DIDDY DUM DIDDY DUM

Programming purists have scorned basic in
general and
for its
ability.
Do ... Loop.

particular
programming

Commodore 64 Basic in
lack of structured
Well, here it is. . . The

Loops are the heart of higher level
structured programming environments, and
offer several advantages over normal basic
FOR ... NEXT loops and GOTO statements. S'more
incorporates fully implemented DO ... LOOP
structure into basic, allowing you to choose
to use and learn about structured
prograrmning.

PAGE 110

Simore Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: DO

ALTERNATE: NONE

FORMAT: DO

KEYWORD: LOOP

ALTERNATE: LO<SHIFT/O>

FORMAT: LOOP

MODE: DIRECT and PROGRAM

DO and LOOP mark the starting point and
ending point of a DO ... LOOP. A DO ... LOOP
simply loops from its ending point back to
its starting point until it is instructed to
do differently.

EXAMPLE # 1

10 CLS
20 DO
30 PRINT "HI"
40 LOOP

EXAMPLE # 2

10 DO
20 BORDER=BORDER+l:IFBORDER=16THENBORDER=0
30 LOOP

PAGE III

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: WHILE

ALTERNATE: W<SHIFT/H>

FORMAT: WHILE (logical argument)

KEYWORD: UNTIL

ALTERNATE: U<SHIFT/N>

FORHAT: UNTIL (logical argument)

MODE: DIRECT and PROGRAM

These commands can be added to either
the DO or LOOP co~nands as conditions to
abort the looping process. For example if we
said DO UNTIL A=3, our do loop would continue
looping until a was equal to three at UNTIL
statement.

EXAMPLE

10 DO UNTIL A=3
20 A=A+l : PRINT A
30 LOOP
40 PRINT "DONE"

When A became equal to 3 in line 10, the
program execution would jump to the next
program statement after the LOOP command (ie:
LINE 40).

PAGE 112

Si more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

EXAMPLE

10 DO
20 A=A+l : PRINT A
30 LOOP UNTIL A=3
40 PRINT "DONE"

When A became equal to 3 in line 30, the
program execution would again jump to the
next program statement after the LOOP command
(ie: LINE 40)

The WHILE command is the exact opposite
of the UNTIL command, program execution is
transferred to the line following the loop
command only when the condition is NOT met.

EXAMPLE

10 DO WHILE A <> 3
20 A=A+l : PRINT A
30 LOOP
40 PRINT "DONE"

When A became equal to 3 in line 10, the
program execution would jump to the next
program statement after the LOOP command (ie:
LINE 40). As with UNTIL, WHILE can also
follow the LOOP command.

PAGE 113

S"more Basic - INSTRUCTION MANUAL

CARDCO, Inc. -

EXAMPLE

10 DO
20 A=A+1 : PRINT A
30 LOOP WHILE A<>3
40 PRINT "DONE"

(316) 267-6525

In addition to these functions DO ... Loops
can be nested:

EXAMPLE

10 DO : CLS
20 DO UNITL BORDER=16
30 BORDER=BORDER+1
40 DO UNTIL PAPER=16
50 PAPER=PAPER+1
60 LOOP
70 PAPER=0
80 LOOP
90 BORDER=0: PRINT "PRESS C TO CONTINUE":

GETKEY A$
99 LOOP WHILE A$ = II "

That's how DO ... LOOPs work.

10 PRINT"IS THIS FUN? (YiN)"
20 DO:GETA$:LOOP UNTIL A$="Y"
30 PRINT"I THOUGHT SO."

PAGE 114

S"more Basic INSTRUCTION MANUAL

CARDeo, Inc. - (316) 267-6525

KEYWORD: EXIT

ALTERNATE: EX<SHIFT/I>

FORMAT: EXIT

MODE: DIRECT and PROGRAM

THe EXIT command allows you to exit a
DO ... LOOP at any time the EXIT command is
encountered. When the EXIT co~nand is
encountered, program execution drops to the
program statement following the LOOP
command.

EXAMPLE

10 CLS : BORDER=0 : PAPER=0 DO
20 DO: BORDER=BORDER+l
30 IF BORDER=15 THEN EXIT
40 LOOP : BORDER=0
50 PAPER=PAPER+l : IF PAPER=16 THEN EXIT
60 LOOP : NORM : END

PAGE 115

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (3I6) 267-6525

PART EIGHT

STRING THINGS AND OTHER THINGS

String manipulation can always be a
difficult task. No matter how many commands
and tools your computer offers for string
manipulation, there always seems to be one
more that you could use to accomplish a task
more easily.

S'more Basic gives you two additional
string manipulation tools. It adds one new
string handling command, and provides a new
way to use an existing command. These two
new functions should make some string
manipulations easier.

S'more also provides two other existing
Commodore 64 Basic cor~ands with additional
(and badly needed) functions. At last you
will have IF ... THEN ... ELSE capability on your
Commodore 64.

PAGE 116

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

KEYWORD: INSTR

ALTERNATE: IN<SHIFT/S>

FORMAT:

MODE:

INSTR a$,b$ [,c]

(a$ is the string to be searched)
(b$ is the sub-string to find)
(c is the starting position)

DIRECT and PROGRAM

INSTR will return a numeric value equal
to the starting position of sub-string (b$)
within a given string (a$). If the
sub-string is not found INSTR will return a
value of ZERO (0). INSTR will allow you to
quickly test for the presence of a character
or group of characters within a string. The
additional parameter, starting position (c),
allows you to declare the character position
within the main string to start searching
from. This extra feature will let you check
for mUltiple occurrences of a character or
group of characters within a string. The
value supplied by the INSTR command allows
you to further process the string using the
MID$, LEFT$ and RIGHT$ commands.

EXAMPLE:

PRINT INSTR ("ABCDEP", "C") <RETURN>

RESULT: 3

PAGE 117

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

PRINT INSTR ("ABCDEF","G") <RETURN>

RESULT: 0

PRINT INSTR ("ABCDEF", "c" , 4) <RETURN>

RESULT: 0

PRINT INSTR ("ABCDEF", "DE") <RETURN>

RESULT: 4

PRINT INSTR ("ABCDEF", "DF") <RETURN>

RESULT: 5

10 A$="12,345,678.90" : B$=A$
20 REM * * * * * CHECK DECIMAL POINTS *
30 DP=INSTR(A$,".")
40 IF DP>0 THEN IF INSTR (A$,DP+l) <> 0

THEN PRINT "TOO MANY DECIMAL POINTS"
50 REM * * * PERFORM VAL (X) FUNCTION *
60 CP=INSTR(B$,","):IF CP=0 THEN GOTO 1 00
70 B$=LEFT$(B$,CP-l)+RIGHT$(B$,LEN(B$)-CP)
80 GOTO 60

100 PRINT A$
110 PRINT B$
120 PRINT VAL(B$)

RESULT:

12,345,678.90
12345678.90

12345678.90

PAGE 118

Si more Basic INSTRUCTION MANUAL

CARneo , Inc. (316) 267-6525

KEYWORD: MID$

ALTERNATE: M<SHIFT/I>

FORMAT:

MODE:

MID$(a$,b [,e]) = d$

(a$ is any existing string)
(b is the starting position)
(c is the number of characters)
(d$ is the string to substitute)
DEFAULT: c=LEN(d$)

DIRECT and PROGRAM

IMPORTANT NOTE: The normal function of the
MID$ command as in Cornmodore 64 Basic is
still operative. The format shown above is a
second function for this cornmand.

The new function added to the MID$
comnand by S'more Basic will allow you to
substitute characters within a string. You
are limited to replacement of equal
quantities of characters only. You can't
replace seven characters with five or five
with seven.

The starting position parameter allows
you to set the character position (from the
right) of the first character to be replaced.
The number of characters to be replaced will
be equal to the number of characters in the
replacement string unless it is set with the
optional parameter.

PAGE 119

S"more Basic - INSTRUCTION MANUAL

CARDCD, Inc. -

EXAMPLES:

10 A$="1234567890"
20 MID$(A$,3)="###"

RESULT: 12###67890

(316) 267-6525

PRINT A$

10 A$=11234567890" : B$="#####"
20 MID$(A$,5,2)=B$: PRINT A$

RESULT: 1234"7890

10 A$="1234567890"
20 MID$(A$,LEN(A$)-3)=MID$(A$,LEN(A$)-4,3)
30 PRINT A..$

RESULT: 1234566780

10 A$="APRIL 15, 1985" : B$=11986"
20 MID$(A$,INSTR(A$,I,")+2)=B$: PRINT A$

RESULT: APRIL 15, 1986

PAGE 120

S" more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

KEYWORD: ELSE

ALTERNATE: E<SHIFT/L>

FORHAT: IF ... THEN ... [:ELSE]

MODE: PROGRAM

With Commodore 64 Basic you learned how
the IF ... THEN conditional statement works.
The ELSE command lets you specify an action
to be taken if the conditional statement in
the IF ... THEN command is not true.

EXAAPLE # 1

100 IF A=B THEN GOTO 400 ELSE GOTO 500

EXAAPLE # 2

100 IF A=B THEN X=4
GOSUB 300

GOSUB 200 ELSE X=5

EXAAPLE # 3

100 IF A=B THEN X=8 : ELSE IF A=C THEN X=9
ELSE IF A=D THEN X=10 : ELSE X=ll

PAGE 121

S" more Basic - INSTRUCTION MANUAL

CARDCO , Inc. - (316) 267-6525

KEYWORD: RESTORE

ALTERNATE: RE<SHIFT/S>

FORMAT: RESTORE [a]

(a is any program line number)
Default a=0

MODE: DIRECT and PROGRAM

S'more Basic's version of the RESTORE
command works just like the Commodore 64
Basic version except S'more allows you to
specify the line number of your program that
that will be read as the next data
statement.

EXAMPLE

10 READ A$: PRINT A$
20 RESTORE 120
30 READ A$: PRINT A$
40 RESTORE 110
50 READ A$ PRINT A$

100 DATA BILL
110 DATA MARY
120 DATA MIKE

RESULT: BILL
MIKE
r.1ARY

PAGE 122

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (316) 267-6525

PART NINE

PEEKS AND POKES

When using S'more Basic you should never
have to use the PEEK or POKE commands again.
All of the common programming functions that
used to require peeking and poking and
remembering special numbers for particular
memory locations have been replaced with a
simple-to-remember, easy-to-use set of
commands.

When the S'more cartridge reconfigures
your computer's memory to allow full use of
the RAM provided, it changes some of the
locations that you may have used to
accomplish some tasks. Other areas of memory
that used to be open and unused are now used
by S'more and peeking and poking these
locations will cause programs to fail to
operate properly.

This section of the S'more manual will be
devoted to discussing how to do the things
that you used to have to use the PEEK and
POKE commands to accomplish. You will also
want to consult the £l.1EMORY MAP and fvIACHINE
LANGUAGE WITH S'fv10RE BASIC sections in the
appendix for more information.

PAGE 123

S" more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

S"MORE BASIC RESERVED VARIABLES

Within S'more Basic, memory locations
that are needed to accomplish certain
functions are treated as RESERVED VARIABLES.
Commodore 64 Basic uses this same system for
the TI and TI$ RESERVED VARIABLES used to
refer to the clock/time function. The
following is a list of S'more's RESERVED
VARIABLES and the corresponding Commodore 64
Basic memory (PEEK/POKE) locations.

RESERVED
VARIABLE

CIA(x)

CIA(x)

COL (x)

SID(x)

VIC(x)

VID(x)

BORDER
PAPER
STOP

REPEAT

MIN/MAX
SUBSCRIPT

x=0to15

x=16to32

x=0to999

x=0to28

x=0to46

x=0to999

MIN/MAX
VALUE

0-255

0-255

0-255

0-255

0-255

0-255

0-15
0-15
ON-OFF

ON-OFF

PAGE 124

MEMORY
LOCATION

56320-
56336
56576-
56591
55296-
56295
54272-
54300
53248-
53294
1024-
2023
53280
53281
788/789
808/809
650

S'more Basic INSTRUCTION MANUAL

CARnCO, Inc. (316) 267-6525

Using each of these RESERVED VARIABLES
you can do the same thing as if you peeked or
poked the location, for example:
COMMODORE 64 BASIC:

PRINT PEEK(53267) <RETURN>

S'more Basic:

PRINT VIC(19) <RETURN>

Both of these statements will print the value
of the VIC chip location (register) that
refers to the light pen x position.

COMMODORE 64 BASIC:

POKE (54296),15 <RETURN>

S'more Basic:

SID(24)=15 <RETURN>

Both of these statements will set the value
of the SID chip location (register) that
refers to the volume level to 15.

For the purpose of converting Commodore
64 Basic programs to run under S'more Basic,
all you need to do is refer to the chart of
location conversions at the end of this
section and make the suggested changes. If

PAGE 125

S"more Basic INSTRUCTION MANUAL

CARDCO, Inc. (3I6) 267-6525

however you are interested in programing the
special functions that are available in your
Commodore 64 computer, you should consult the
Commodore Programmers Reference Guide for a
more complete explanation of what these
memory locations are used for.

Here
functions
VARIABLES:

is a brief
controlled

explanation of the
by the S'more RESERVED

CIA(x) refers to the Complex Interface
Adapter chips. You should think of the
CIA(x) RESERVED VARIABLE as an array variable
that has been dimensioned (DIM CIA(31» to
hold 32 subscripted variables. There are two
of CIA chips, each has 16 ports or registers.
The first CIA chip (CIA#l) is addressed using
the first 16 (0 to 15) available subscripts
of the CIA(x) variable, and the second CIA
chip (CIA#2) is addressed using the last 16
(16 to 31) subscripts.

SID(x) refers to the Sound Interface Device
chip. You should think of the SID(x)
RESERVED VARIABLE as an array variable that
has been dimensioned (DIM SID(28» to hold 29
subscripted variables. Each of these 29
variables will refer to one of the 29
registers on the SID chip.

PAGE 126

S'more Basic INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

VIC(x) refers to the Video Interface
Controller chip. You should think of the
VIC(x) RESERVED VARIABLE as an array variable
that has been dimensioned (DIM VIC(46» to
hold 47 subscripted variables. Each of these
47 variables will refer to one of the 47
registers on the SID chip.

COL(x) refers to the Color RAM area. This is
the area in memory where the computer stores
the color information for the screen. There
are 1000 Color RA~1 locations that match the
1000 possible character locations on your
video screen. You should think of the COL (x)
RESERVED VARIABLE as an array variable that
has been dimensioned (DIM COL(999» to hold
1000 subscripted variables. Each of these
1000 variables will refer to one of the 1000
Color RAM locations.

VID(x) refers to the Video RAM area. This is
the area in memory where the computer stores
the character information for the screen.
There are 1000 Video RAM locations that match
the 1000 possible character locations on your
video screen. You should think of the VID(x)
RESERVED VARIABLE as an array variable that
has been dimensioned (DIM VID(999» to hold
1000 subscripted variables. Each of these
1000 variables will refer to one of the 1000
Video RAt1 locations.

BORDER, PAPER, STOP and REPEAT are discussed
individually, refer to each item for an
individual explanation of its functions.

PAGE 127

S"more Basic INSTRUCTION MANUAL

CARDCO , Inc. (316) 267-6525

Again, due to the changing around of the
memory configuration done by S'more, peeks
and pokes to specific memory locations simply
will not work. For example, all of the RAM
area from location t21Ct21t21 HEX (that is 31072
decimal) up to FEFF Hex (that is 65279
decimal) is free for use as basic programming
space. So a POKE to location 532810 decimal
(which was used under Commodore 64 Basic to
change the border color) would have no
effect. The reason for this is because
S'more has moved the Video Interface
Controller chip out of the way of basic
programming, so poking 532810 just pokes a
value into location 53280 of normal RAM.
This movement of things is almost total, so
if you want to PEEK or POKE around, consult
the memory map in the appendix to see what is
where.

NOTE: Also see MACHINE LANGUAGE WITH S'MORE
BASIC in the appendix if you are having
problems. MIL subroutines will run with
S'more, but must be converted correctly.

PAGE 128

S'more Basic - INSTRUCTION MANUAL

CARDCO, Inc. - (316) 267-6525

LOCATION CONVERSION CHART

LOCATION

0-767

768-819

820-827
828-1019
11020-1023
1024-2023

2024-21047
2048-40959
40960-53247
53248-53294
53295-54271
54272-54230
54231-55295
55296-56295
56295-56319
56320-56335
56336-56575
56576-56591
56592-65279
65280-65535

CONVERSION PROCEDURE

Basic Work Area/Pointers etc.
PROBABLY O.K. *
These are the KERNAL VECTORS
and are left untouched.
DO NOT CHANGE THESE - O.K.
Add 2244 to the number
Add 516 to the number
Add 2040 to the number
Change to VID(0-999)
or Add 2048 to the number

Add 2048 to the number
Add 2048 to the nun~er
NOT NORMALLY USED **
Change to VIC(0-48)
NOT NORMALLY USED **
Change to SID(0-28)
NOT NORMALLY USED **
Change to COL(0-999)
NOT NORMALLY USED **
Change to SID(0-15)
NOT NORMALLY USED **
Change to SID(16-31)
NOT NORMALLY USED **
DO NOT USE - RESERVED AREA

* Most of the items
unchanged, but refer to
problems arise.

in
the

these areas are
memory map if

** These locations
Commodore 64 Basic.

are

PAGE 129

not defined by

S"more Basic - INSTRUCTION MANUAL

CARnCO, Inc. - (J16) 267-6525

NOTES

PAGE 130

S'more Basic

APPENDIX

INSTRUCTION MANUAL

(316) 267-6525

APPENDIX

MACHINE LANGUAGE PROGRAMMING

Generally machine language programming
will fall into one of two categories. This
section will deal with each category
separately. The first category will consist
of programs that are written completely in
machine language. The second category will
consist of hybrid programs that are written
in a combination of Basic and machine
language. Machine language programs and
hybrid Basic/machine language programs can
both be used with S'more Basic as long as
they are written correctly. Most existing
machine language programs and routines will
need to be modified to some extent. In cases
where the programs or routines access
specific ROM locations (bypassing the
standardized KERNAL vectors), these routines
will have to be completely rewritten. Due to
the revision of the memory allocation, most
machine language programs and routines will
need to be relocated to a safe area within
S'more Basic's new memory confines.

i

S" more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

100% MACHINE LANGUAGE PROGRAMS

converting existing machine language
programs for use with S'more Basic may well
be a monumental task, depending on the
complexity of the program. More than likely,
this job should be attempted by the author of
the original code. The guidelines for
converting machine language programs will be
the same as those for writing original code
and machine language sub-routines.

If you want to write new machine language
programs to run in S'more's expanded 60K
available memory space, there are a couple of
possibilities. First, consider writing the
program in S'more Basic format and then using
the S'more Basic Compiler which will be
available in the fourth quarter of 1985 to
compile your basic program into machine
language code. Using the S'more Basic
Compiler does not require any machine
language programming knowledge or experience
on the part of the programmer. The operation
of the S'more Basic Compiler is automatic;
you just provide a running, error-free
version of a basic program, and the S'more
Basic Compiler will provide you with a
ready-t- run compiled machine language
program. A compiled S'more Basic program
will give you full advantage of S'more's 60K
work space and the increased speed that a
machine language program provides. Short
programs will require more memory after they

ii

S'more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

have been compiled, due to the overhead
required by the compiler. Longer compiled
programs, however, will probably require less
memory than their S'more Basic versions.

The other possibility, of course, is to
generate machine language code directly, or
by using a machine language monitor or
assembler. The programmer will need to be
familiar with 6502 machine language
programming, as well as the operations of the
Conmlodore 64 I/O, Video, Sound and Screen
operations. Any standard 6502 machine
language code assembler will be useful, but
assemblers that utilize specific locations in
the Commodore 64 ROMs will not work. Most
machine language monitor programs will run in
the S'more Basic environment. Included on
the disk that comes with your S'more
cartridge is the public domain machine
language monitor program (RUN"SMON") that is
used by CARDCO's R&D staff to prepare machine
language programs and routines. All machine
language programs should be written to
conform with the machine language programming
guidelines at the end of this section.

MACHINE LANGUAGE SUB-ROUTINES

You may want to add machine language
sub-routines to your S'more Basic programs to
increase the speed of an operation, or to
make an operation perform tasks that are not
easily done within normal basic. The screen

iii

..

..

S'more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

dump program (RUN"SDUMP") on the disk that is
provided with your S'more cartridge is an
example of such a sub-routine.

Creating machine language sub-routines
for use with S'more Basic programs will
require knowledge of 6502 machine language
programming, and must conform with the
guidelines for machine language programming
provided at the end of this section. S'more
Basic's expanded memory provides ample room
for the addition of machine language routines
and allows the use of the same commands
(PEEK, POKE, SYS and USR) that standard
Commodore 64 Basic provides. The major
differences between writing routines for
S'more Basic and Commodore 64 Basic are the
location of flags, pointers and data caused
by the variation in memory maps between the
two basics, the location of the routine
(where in memory the routine is located) and
the amount of dependence on existing ROM
routines allowed.

As with all machine language programming
a good machine language monitor like the
public domain machine language monitor
program (RUN"SMON") that is included on the
disk that comes with your S'more cartridge
and an assembler program can be valuable
tools and make machine language programming
easier.

iv

S'more Basic - INSTRUCTION MANUAL

APPENDIX (316) 267-6525

GUIDELINES FOR MACHINE LANGUAGE PROGRAMS

1. PROGRAM LOCATION

The memory configuration used by
S'more Basic is different than the one
used by Commodore 64 Basic. The locations
available for safe storage of machine
language programs and routines will
therefore be different.

Any stand alone machine language
program (a program that is not part of, or
to be used with a basic program) can use
and be located anywhere within all of the
61,183 bytes of the available RAM from
$1000 to $FEFF. If the program does not
allow cassette I/O, the 201 bytes reserved
for the cassette buffer (located from
$0540 to $05FF) may be utilized.
Additionally, if the program does not
allow RS-232 I/O, 512 more bytes (located
from $0600 to 07FF) are available from the
RS-232 input and output buffers.

If your machine language routines are
to be used with basic programs you must be
careful to protect them from being
destroyed by basic's use of memory for
variable and program storage. You could
hide your routines from basic in the
cassette buffer (located from $0540 to
$05FF) or RS-232 buffers (located from
$0600 to 07FF) if you are sure that
cassette and/or RS-232 functions will

v

S" more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

never be used. But, a better method is to
tell basic where you are putting your
routine, and tell basic not to use that
area of RAM. This can be done by locating
your program at the very top of the
available RAM area (up to $FEFF) and
resetting the pointer that tells basic the
highest location that it can use.
Resetting the end of basic pointer,
located at $0037-0038, will reserve the
space between the new pointer value and
the actual top of memory which is $FEFF
for your routines and protect them from
any basic operations that would normally
use that area of RAM.

An even better method would include a
program that reads the existing end of
basic pointers and relocates the program
and resets the pointers to accommodate the
new program location. This would allow
you to load several machine language
routines, each would locate itself just
below the previous routine, preventing
conflicts and allowing simultaneous
operation of several routines.

2. S"MORE BASIC MEMORY MAP

The S'more Basic MEMORY MAP is listed
right after this section. The MEMORY MAP
will provide you with all of the
descriptions and memory locations you will
need to use to interface machine language
routines with basic programs. Review the

vi

Si more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

MEMORY MAP carefully before you address
any areas of RAM below $1000. Most of the
pointer, flag, register and vector
locations are the same as those in
Commodore 64 Basic, however, some are not.
Using the MEMORY MAP and checking critical
locations used by your routines against
the standard Commodore 64 Basic memory map
will highlight any differences. All of
the necessary flags, pointers, etc. are
available, but you may have to look a bit
to find them.

NOTE: In some cases the wording describing
a S'more Basic memory location may differ
from the wording describing the
corresponding Commodore 64 Basic memory
location. This does not necessarily mean
that the two locations are different in
function.

3. ROM CALLS, KERNAL CALLS AND VECTORS

When the S'more Basic cartridge is
installed the Commodore 64 Basic ROMs are
not available and any calls or jumps to
these locations in ROM will actually wind
up in the active basic RAM area under
S'more Basic. The existing KERNAL calls
used by Commodore Basic have been retained
with only minor changes, however it it
mandatory that you use the KERNAL JUMP
VECTORS provided in the s'more Basic
MEMORY MAP to access these KERNALs.
Commodore has provided a standardized set

vii

Si more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

of KERNAL vector locations which S'more
Basic observes as strictly as possible.
If these vectors are used, your programs
will run on this as well as future
versions of S'more Basic.

4. RAM/ROM BANKING

As long as the KERNAL vectors referred
to in the previous paragraphs are
observed, the RAM/ROM banking will be
transparent to the programmer as well as
the end user, and the programmer need not
make any allowances for the banking
procedures. If however you need to
address the banking function, the S'more
Basic ~1EMORY MAP will provide the
necessary locations for the banking stacks
and registers. The operation of the
banking system is similar to that of the
Commodore +4 computer and is detailed in
the documentation available from Commodore
for that machine.

SPECIAL NOTE: Be sure that you are aware that
two of the favorite places to put machine
language routines have been changed. The
cassette buffer has been moved from $033C to
$0540. The area from $C000 to SCFFF can no
longer be used safely because it is now part
of the active basic RAM area.

viii

S'more Basic INSTRUCTION MANUAL

APPENDIX

S'more Memory Map

HEX ADDRESS DESCRIPTION

(316) 267-6525

0000 6510 ON-CHIP DATA DIRECTION REGISTER
0001 6510 ON-CHIP 5-BIT I/O-REGISTER
0002 SEARCH TOKEN FOR BASIC-STACK
0003-0004 JUMP VECTOR: FLOATING/INTEGER CONVERSION
0005-0006 JUMP VECTOR: INTEGER/FLOATING CONVERSION
0007 SEARCH CHARACTER (' :', $00 FOR DATA)
0008 FLAG : SCAN FOR QUOTE AT END OF STRING
0009 SCREEN COLUMN FROM LAST TAB
OOOA FLAG: O=LOAD, l=VERIFY
OOOB INPUT BUFFER POINTER / NUMBER OF SUBSCRIPTS
OOOC FLAG: ROUTINE TO DIMENSION DEFAULT ARRAY
0000 DATA TYPE: $FF = STRING, $00 = NUMERIC
OOOE DATA TYPE: $80 = INTEGER, $00 = real
OOOF FLAG FOR GARBAGE COLLECTION/QUOTE IN LIST/SCAN FOR DATA
0010 UTILITY FLAG FOR USER FUNCTION CALL
0011 FLAG $OO=INPUT/INFORM, $40=GET, $98=READ
0012 FLAG: TANGENT SIGN/COMPARISON RESULTS
0013 FLAG : TEMPORARY OUTPUT CHANNEL
0014-0015 TEMPORARY 16-BIT INTEGER PARAMETER (FOR LINE NUMBER, ETC.)
0016 POINTER TO ACTUAL ELEMENT IN STRING STACK
0017-0018 POINTER TO LAST TEMPORARY STRING ADDRESS
0019-0021 STACK FOR TEMPORARY STRINGS
0022-0025 UTILITY POINTER AREA
0026-002A MULTIPLY: FLOATING POINT PRODUCT
002B-002C POINTER: START BASIC PROGRAM
002D-002E POINTER: END BASIC PROGRAM/START OF VARIABLES
002F-0030 POINTER: START OF ARRAYS
0031-0032 POINTER: END OF ARRAYS
0033-0034 POINTER: BOTTOM OF STRING STORAGE
0035-0036 UTILITY POINTER FOR STRINGS
0037-0038 POINTER: END BASIC RAM

ix

S'more Basic - INSTRUCTION MANUAL

APPENDIX (316) 267-6525

HEX ADDRESS DESCRIPTION

0039-003A CURRENT BASIC COLUMN LINE NUMBER
003B-003C CURRENT PROGRAM POINTER (FOR CHARGET ROUTINE)
003D-003E UTILITY POINTER FOR SEARCH IN STACK
003F-0040 CURRENT DATA LINE NUMBER
0041-0042 POINTER: ADDRESS FOR CURRENT DATA ITEM
0043-0044 VECTOR: FOR INPUT ROUTINE
0045-0046 POINTER: TO NAME OF CURRENT BASIC VARIABLE
0047-0048 POINTER TO CURRENT BASIC VARIABLE DATA
0049-004A POINTER: INDEX VARIABLE FOR/NEXT LOOP
004B-004C POINTER FOR COMPARISON OPERATIONS
0040 MASK FOR COMPARISON OPERATIONS
004E-004F POINTER: FOR FN FUNCTION
0050-0052 UTILITY: STRING DESCRIPTIONS FOR VARIABLE MANAGEMENT
0053 FLAG FOR HELP (LINE NUMBER)
0054 6510 JUMP-COMMAND FOR FUNCTIONS
0055-0056 JUMP VECTOR TO DECLARE FUNCTIONS
0057-005B REGISTER FOR ARITHMETIC, ACCUMULATOR #3
005C-0060 REGISTER FOR ARITHMETIC, ACCUMULATOR #4
0061-0065 FLOATING POINT ACCU~lULATOR #1
0066 SIGN FOR FLOATING POINT ACCUMULATOR #1
0067 POINTER: EVALUATION OF CONSTANT VALUE
0068 OVERFLOW FOR FLOATING POINT ACCUMULATOR #1
006A-006E FLOATING POINT ACCUMULATOR #2
006F RESULT: SIGN COMPARISON OF ACCUM #1/ACCUM #2
0070 FLOATING POINT ACCUMULATOR #1 - LOW ORDER
0071-0072 UTILITY POINTER
0073 ACCUMULATOR FOR SYS-COMMANO (NORMAL: 030C)
0074 X-REGISTER FOR SYS-COM~1ANO (NORMAL: 030D)
0075 Y-REGISTER FOR SYS-COMMANO (NORMAL: 030E)
0076 PROCESSOR STATUS FOR SYS-COMMANO (NORMAL: 030F)
0077 LENGTH OF DS$
0078-0079 POINTER TO DS$
007A-007B UTILITY REGISTER FOR BELOW ROM-TECHNOLOGY

x

S'more Basic - INSTRUCTION MANUAL

APPENDIX (316) 267-6525

HEX ADDRESS DESCRIPTION

007C-007D STACK POINTER FOR BASIC STACK
007E-007F FREE
OOBO FLAG FOR GETKEY
00B1 FLAG FOR DIRECT/PROGRAM MODE
OOB2-00BA FREE
OOBB-OOBF LAST RND SEED VALUE
0090 STATUS WORD ST
0091 FLAG FOR STOP KEY/SCAN
0092 TIME CONSTANT FOR TAPE
0093 O=LOAD. l=VERIFY
0094 FLAG FOR BYTE IN SERIAL BUS OUTPUT BUFFER
0095 SERIAL BUS OUTPUT BUFFER (FOR EOI)
0097 TEMPORARY STORAGE FOR REGISTER
0098 NUMBER OF OPEN FILES
0099 ACTIVE (DEFAULT) INPUT DEVICE NUMBER
009A ACTIVE (DEFAULT) OUTPUT DEVICE NUMBER
009D FLAG: $BO=DIRECT MODE. $OO=PROGRAM MODE. $CO=MONITOR
009E TAPE ERROR LOG - PASS 1
009F TAPE ERROR LOG - PASS 2
00AO-00A2 CLOCK (FOR TI. TI$)
00A3-00A4 BIT COUNTER FOR SERIAL OUTPUT
00A5 UTILITY FLAG FOR SERIAL OPERATIONS
00A6-00AD UTILITY WORK AREA
OOAE-OOAF POINTER: END OF PROGRAM (TAPE)
00BO-00B6 UTILITY WORK AREA
00B7 LENGTH OF FILENAME
OOBB LOGICAL FILE NUMBER
00B9 SECONDARY ADDRESS
OOBA DEVICE NUMBER
OOBB-OOBC POINTER: CURRENT FILENAME
OOCO FLAG FOR TAPE MOTOR
00C1-00C2 START ADDRESS FOR INPUT/OUTPUT
00C3-00C4 END ADDRESS FOR INPUT/OUTPUT

xi

S'more Basic INSTRUCTION MANUAL

APPENDIX {3I6} 267-6525

HEX ADDRESS DESCRIPTION

00C5 CURRENT KEY PRESSED
00C6 NUMBER OF CHARACTERS IN KEYBOARD BUFFER
00C7 FLAG FOR REVERSE ON
00C8 END OF LOGICAL LINE FOR INPUT
00C9-00CA CURSOR X,Y POSITION AT START OF INPUT
OOCB FLAG: SHIFTED CHARACTERS = 64
OOCC FLAG: CURSOR BLINK ON = 0
OOCD TIMER: CURSOR ON/OFF
OOCE CHARACTER UNDER CURSOR
OOCF FLAG: LAST CURSOR BLINK ON/OFF
0000 FLAG: INPUT/GET FROM KEYBOARD
0001-0002 POINTER: CURRENT SCREEN LINE ADDRESS
0003 CURSOR POSITION ON CURRENT LINE
0004 FLAG: IN QUOTE MODE? NO = 0
0005 CURRENT LINE LENGTH
0006 CURRENT CURSOR LINE (REAL)
0007 TEMPORARY STORAGE FOR DATA
0008 NUMBER OF INSERTS
OOD9-00F2 SCREEN LINK TABLE
OOF3-00F4 POINTER: COLOR RAM LOCATION
00F5-00F6 VECTOR: KEYBOARD DECODER TABLE
00F7-00F8 POINTER: TO RS-232 INPUT BUFFER
00F9-00FA POINTER: TO RS-232 OUTPUT BUFFER
OOFB-OOFE NOT USED
OOFF REAL VS. ASCII MARKER
OlOO-OlOF BUFFER FOR REAL VS. ASCII CONVERSION
0100-0127 BUFFER FOR FILENAME
0128-01FC 6510 SYSTEM STACK
01FD-01FF RESERVED TEMPORARY DATA STORAGE
0200-0258 BASIC - INPUT BUFFER
0259-0262 KERNAL TABLE: LOGICAL FILE NUMBERS ACTIVE
0263-026C KERNAL TABLE: DEVICE NUMBER FOR EACH FILE

xii

Slmore Basic - INSTRUCTION MANUAL

APPENDIX (316) 267-6525

HEX ADDRESS DESCRIPTION

0260-0276 KERNAL TABLE: SECONDARY ADDRESS FOR EACH FILE
0277-0280 KEYBOARD BUFFER
0281-0282 POINTER: START BASIC RAM - BOTTOM OF MEMORY
0283-0284 POINTER: END BASIC RAM - TOP OF MEMORY
0285 FLAG: TIMEOUT-FLAG FOR PARALLEL IEEE488 BUS
0286 CURRENT CHARACTER COLOR CODE
0287 BACKGROUND COLOR UNDER CURSOR
0288 HIGH BYTE - TOP OF SCREEN RAM (PAGE)
0289 LENGTH OF KEYBOARD BUFFER
028A FLAG: FOR REPEAT KEY(s) - 128 = REPEAT
028B COUNTER FOR REPEAT SPEED
028C COUNTER FOR REPEAT DELAY
0280 FLAG: FOR SHIFT/COMMODORE/CONTROL KEYS
028E PREVIOUS SHIFT/COMMODORE/CONTROL FLAG
028F-0290 VECTOR: KEYBOARD DECODER TABLE
0291 FLAG: SHIFT/CBM DISABLE
0292 FLAG: AUTO SCROLL DOWN (O=ON)
0293-029E RS-232 EMULATOR
029F-02AO STORAGE FOR IRQ VECTOR DURING TAPE I/O
02A1 CIA 2 NMI FLAG
02A2 CIA 1 TIMER
02A3 CIA 1 INTERRUPT FLAG
02A4 CIA 1 FLAG FOR TIMER OVER/UNDER TIME
02A5 STORAGE FOR SCREEN LINE INDEX
02A6 FLAG: PAL = 1 / NTSC = 0
02A7 CONSTANT FOR SYSTEM VARIABLE NULL VALUE
02A8-02A9 RESERVED
02AA FLAG: FOR BANK SELECT IRQ
02AB FLAG FOR KEY ON/OFF
02AC POINTER: LAST CHARACTER OUTPUTTED
02AD RELATIVE POINTER: FUNCTION KEY TEXT
02AE POINTER: LENGTH OF FUNCTION KEY TEXT
02AF ALLOWABLE INPUT LENGTH FOR INFORM

xiii

S" more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

HEX ADDRESS DESCRIPTION

02BO FLAG: MERGE ACTIVE
02B1 FLAG: HELP ON/OFF
02B2 FLAG: PRINT AT ACTIVE
02B3 TEMPORARY STORAGE FOR PRINT AT
02B4 START STORAGE FOR PRINT AT / TEMP FOR CATALOG
0285 LINE STORAGE FOR PRINT AT / TEMP FOR CATALOG
0286-02B7 LINE NUMBER FOR CONTINUE
02B8-02B9 ADDRESS FOR CONTINUE
02BA PRINT USING FILLER CHARACTER
02BB PRINT USING GROUP MARKER CHARACTER
02BC PRINT USING DECIMAL POINT CHARACTER
02BD PRINT USING DOLLAR SIGN CHARACTER
02BE-02C1 TEMPORARY POINTER TO FORMAT STRING
02C2 LAST ERROR NUMBER
02C3-02C4 LINE NUMBER OF LAST ERROR
02C5-02C6 LINE NUMBER OF ERROR HANDLING ROUTINE (TRAP)
02C7 TEMPORARY STORAGE FOR TRAPPED LINE
02C8-02C9 ADDRESS OF LAST ERROR
02CA STACK POINTER: RESUME FROM ERROR
02CB-02CC TEMPORARY STORAGE OF ACTUAL ADDRESS FOR DO
02CD-02CE TEMPORARY STORAGE OF ACTUAL LINE NUMBER OF DO
02CF-02DO STEP INCREMENT FOR AUTO
02D1 FLAG: TRACE ON/OFF
02D2-02D5 TEMPORARY STORAGE FOR VARIOUS ROUTINES
02D6-02E8 WORK AREA FOR PRINT USING, FIND AND CHANGE
02E9 UTILITY STORAGE FOR INDIRECT LOAD
02EA-02F1 TABLE: LENGTH OF FUNCTION KEY STRINGS
02F2 FLAG: SCROLL UP ACTIVE
02F3-02F4 BELOW RAM STACK
02F5-02F6 RAM ACTIVE STACK
02FB-02FC REGISTER: BANKING - NMI
02FD-02FF REGISTER: BANKING - UTILITY

xiv

S'more Basic - INSTRUCTION MANUAL

APPENDIX (316) 267-6525

HEX ADDRESS DESCRIPTION

0300-0301 VECTOR PRINT ERROR MESSAGE
0302-0303 VECTOR BASIC DIRECT MODE - INPUT LOOP
0304-0305 VECTOR TOKENIZE BASIC TEXT
0306-0307 VECTOR BASIC LISTING TOKEN TO ASCII
0308-0309 VECTOR INTERPRETER LOOP
030A-030B VECTOR CALCULATE ARITHMETIC FORMULA
030C-0300 VECTOR USER TOKEN
030E-030F VECTOR USER TOKEN TO ASCII CHANGE
0310-0311 VECTOR USER TOKEN EXECUTE
0312-0313 VECTOR USR FUNCTION
0314-0315 VECTOR
0316-0317 VECTOR
0318-0319 VECTOR
031A-031B VECTOR

IRQ HARDWARE INTERRUPT
BRK INSTRUCTION INTERRUPT
NMI - NON-MASKABLE INTERRUPT
KERNAL OPEN ROUTINE

031C-0310 VECTOR KERNAL CLOSE ROUTINE
031E-031F VECTOR KERNAL CHKIN ROUTINE
0320-0321 VECTOR KERNAL CHKOUT ROUTINE
0322-0323 VECTOR KERNAL CLRCHN ROUTINE
0324-0325 VECTOR KERNAL CHRIN ROUTINE
0326-0327 VECTOR KERNAL CHROUT ROUTINE
0328-0329 VECTOR KERNAL STOP KEY ROUTINE
032A-032B VECTOR KERNAL GETIN ROUTINE
032C-0320 VECTOR KERNAL CLALL ROUTINE
032E-032F VECTOR I/O CONFIGURATION + BASIC WARM START
0330-0331 VECTOR KERNAL LOAD ROUTINE
0332-0333 VECTOR KERNAL SAVE ROUTINE
0334-0353 GET CHARACTER ADDRESS
003A GET NEXT CHARACTER
0344 TEST IF CHARACTER OR NUMBER
0354-035E LOA (txtptr),y
035F-0369 LOA (index1),y
036A-0374 LOA (index2),y
0375-037F LOA (strng1),y

xv

r
S'more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

HEX ADDRESS DESCRIPTION

0380-038A LDA (lowtr),y
038B-0395 LDA (facmo),y
0396-0399 LDA (impptr),y
039A-039D LOA (defptr),y
039E-03A1 LDA (linnum),y
03A2-03A5 LOA (varptn),y
03A6-03A9 LOA (lofac),y
03AA-03AD LOA (lofac+3),y
03AE-03B1 LOA (hifac),y
03B2-03B5 LDA (hifac+2),y
03B6-03B9 LDA (facho),y
03BA-03BD LDA (dscpnt),y
03BE-03C1 LDA (argmo),y
03C2-03C5 LDA (hifac+3),y
03C6-03C9 LDA (fndpnt),y
03CA-03D5 INDIRECT LOAD ROUTINE
03D6-03E1 LONG JUMP ROUTINE FOR NMI WITH RAM ACTIVE
03E2-03F2 LOAD ROUTINE FOR FUNCTION KEY VALUE
03F3-053F BASIC STACK
0540-05FF CASSETTE BUFFER
0600-06FF RS-232 INPUT BUFFER
0700-07FF RS-232 OUTPUT BUFFER
0800-0BFF EXECUTE SPACE FOR VARIOUS ROUTINES
OCOO-OFE7 SCREEN RAM
OFFS-OFFF SPRITE ADDRESS POINTERS
1000-FEFF BASIC WORK SPACE
FFOO-FF27 BUFFER FOR OS, OS$
FF28-FFA7 STORAGE FOR FUNCTION KEY DEFINITIONS
FFE4-FFFB UTILITY ROUTINE FOR RAM NMI

xvi

S"more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

S'MORE BASIC COMPILER

If you want the speed of a machine
language program, but don't have the time to
become a machine language programmer, the
S'more Basic Compiler is for you. The S'more
Basic Compiler wil transform your slow
running basic programs into quick machine
code. The S'more Basic Compiler Will speed
up basic program execution by as much as
2000% while compacting large basic programs
into compact machine code requiring less
memory. (NOTE: short basic programs may
become longer due to the operating system
overhead required by the compiler.) But,
most importantly, the S'more Basic Compiler
has been written specifically to take
advantage of the extended memory and command
set provided by your S'more Basic cartridge.

If you put a value on your time, think
about how long it would take to save $40.00
worth of your time if your programs ran 20
times faster. The S'more Basic Compiler will
be released during the late 3rd or early 4th
quarter of 1985. The suggested retail of the
S'more Basic Compiler will be $39.95.

Contact your dealer or CARDCO's customer
service dept. for details and ordering
information.

xvii

S'more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

THE S'MORE DEMO DISKETTE

There are several worthwile programs
(along with several worthless, but tutorial
ones) on the Demo Diskette that has been
provided with your S'more cartridge. The
Demo Diskette is not copy protected, so
please make a back up copy of the disk as
soon as possible. If your Demo Diskette
fails, return it with $3.00 to cover shipping
and handling to CARDCO's Customer Service at
the address shown at the beginning of this
book.

NOTICE: The Demo Diskette is provided as a
bonus, the disk is not advertised as part of
the S'more Basic Cartridge unit sale, and
until you opened the package you didn't even
know it was there. CARDCO Inc. in no way
guarantees the performance, serviceability or
reliability of the disk or the programs on
it. CARDCO will replace the disk, or sell
you a new one for $3.00 including shipping
and handling as described above.

The instructions for use of the Demo
Diskette and the programs on it are on the
disk itself and may be printed on your
printer or seen on your video srceen. To use
the instructions type:

RUN"I" <RETURN>

and follow the prompts on the screen.

xviii

S'more Basic INSTRUCTION MANUAL

APPENDIX (316) 267-6525

There are no instructions provided for
the SMON program. A list of the commands
available has been provided, but it is beyond
the scope of this program to teach you how to
program using machine language.

Most of the other programs on the Demo
Diskette are menu driven and should require
little if any instruction for their use.
Those instructions that are needed will be
provided by the "I" program.

Remember, none of these programs is copy
protected in any way. The purpose of
providing these programs to you is for your
educational benefit. We hope you take the
time to look at the programs and see how the
expanded capabilities of S'more Basic are
used. Use the programs, list the programs,
modify them or do whatever you want to with
them as long as you learn from them.

If you write a program using S'more Basic
and you would like to make it available to
future purchasers of the S'more Basic
cartridge, mail us a copy. If we find it to
be of merit and include it on future Demo
Disks, we will pay you $100.00 for all rights
to your program.

xix

S'more Basic - INSTRUCTION MANUAL

APPENDIX (316) 267-6525

S'more Basic Memory Allocation

xx

S'more Basic - INSTRUCTION MANUAL

APPENDIX

I (APOSTROPHE) •••••••••••• 14
AT •••••••••••••••••••••••• 69
AUTO ON/OFF ••••••••••••••• 15
BORDER •••••••••••••••••••• 48
CATALOG ••••••••••••••••••• 53
CHANGE •••••••••••••••••••• 23
CIA(x) ••••••••••••••••••• 124
CLS ••••••••••••••••••••••• 40
COL(x) 124
DEC ••••••••••••••••••••••• 31
DELETE •••••••••••••••••••• 18
DISK •••••••••••••••••••••• 60
DO ... LOOP III
DOPEN# •••••••••••••••••••• 64
OS •••••••••••••••••••••••• 62

DS$ ••••••••••••••••••••••• 62
DUMP •••••••••••••••••••••• 28
EL ••••••••••••••••••••••• 106
ELSE ••••••••••••••••••••• 121
ER ••••••••••••••••••••••• 106
ERR$ ••••••••••••••••••••• 107
EXIT 115
FIND 20
GETKEY ••••••••••••••••••• 102

HELP ON/OFF ••••••••••••••• 12
HEX ••••••••••••••••••••••• 32

IF ••• THEN ••• ELSE ••••••••• 121
INFORtvl 100
INK ••••••••••••••••••••••• 48
INLINE 97
INLINE# ••••••••••••••••••• 99

xxi

(316) 267-6525

INPUT ••••••••••••••••••••• 96
INSTR •••••••••••••••••••• 117
KEy 33
LIST •••••••••••••••••••••• 17
LOAD •••••••••••••••••••••• 54
LOOP ••••••••••••••••••••• III
LOWER ••••••••••••••••••••• 42
MERGE ••••••••••••••••••••• 58
MID$ 119
MONITOR ••••••••••••••••••• 47
NORM •••••••••••••••••••••• 44
NUMBER •••••••••••••••••••• 25

OL D ••••••••••••••••••••••• 30
PAPER ••••••••••••••••••••• 48
PRINT AT •••••••••••••••••• 69
PUDEF ••••••••••••••••••••• 93
RECORD# 66
REPEAT ON/OFF ••••••••••••• 43
RESET ••••••••••••••••••••• 46
RESTORE •••••••••••••••••• 122
RESUME 108
RUN ••••••••••••••••••••••• 56

SAVE •••••••••••••••••••••• 54
SID(x) 124

STOP ON/OFF ••••••••••••••• 45
TRACE ON/OFF 29

TRAP 104
UNTIL 112
UPPER ••••••••••••••••••••• 41
US I NG ••••••••••••••••••••• 72
VERIFy 54

S'more Basic INSTRUCTION MANUAL

APPENDIX

VIC(x) 124
VID(x) 124
WHILE 112

(Also See Pound Sign) · ... 74
(Alos See Pound Sign) · ... 83
$ (Also See Dollar Sign) ... 83
$ (Also See Dollar Sign) ... 91
+ (Also See Plus Sign) 74
+ (Also See Plus Sign) 85
- (Also See Minus Sign) · ... 74
- (Also See Minus Sign) · ... 85
, (Also See Comma) 74
, (Also See Comma) 88
t (Also See Up Arrow) 74
tttt (Also See Up Arrows) · . 91

(Also See Equal Sign) 74
(Also See Equal Sign) · ... 78

j (Also See Greater Than) · . 74
j (Also See Greater Than) · . 77

63999 26
Program Trace•.. 29
Abbreviations•••. 4
Alternate ••...••••••••...... 4
APOSTROPHE •.•••••.•••...•.. 14
AT••...••••..•••••..... 69
AUTO ..••.•..••••.•••••..••. 15
Auto Load/Run Function ...•. 56
Automatic Line Numbering ... 15
Banking RAM/ROM•.. viii

xxii

(316) 267-6525

Basic Compiler •••••••.... xvii
BORDER ••••.•••••••..•...... 48
Carets (Also See t) 74
Cassette Buffer ••••••....... v
CATALOG 53
CHANGE•..•... 23
Character Color Selection .. 49
CHR$(O) (Fixed)•..•... 10
CIA•.•••. 124
Clear Screen .•.......•••••• 40

CLR/HOME .••••••••••••...... 40

Color RAM 127
Combining Programs •••...... 58
Comma 74
Commodore Basic Programs 7
Compatibility .•.•••••...... IV
Compiler•... xvii
Compiling Basic Programs •.• ii
Complex Interface Adapter. 126
Conventions 2
Converting Commodore Basic 125
Converting Commodore Basic 129
Converting Programs ..•...... 7
Copyright Notice ...••.•.... II
Creating a Relative File ... 64
Cursor Controls •••......... 69
Customer Service•....... 1
Debugging Programs •••...... 28
Debugging Programs•. 29

S"more Basic INSTRUCTION MANUAL

APPENDIX

DEC•..••••••••• 31
Decimal Point (Also See .) • 74
Decimal Printing•.•••. 89
Decimal to Hex Conversion •• 31
Defaul t .•....••............. 5
DEL ETE .•••.•............... 18
Demo Diskette •.......... xviii
Direct Mode •.••............. 6
Directory Function 53
Disk (S'more Demo) xviii
DISK•••••••••••. 60
Disk Directory Function •••. 53
Disk Drive Commands ...••••. 60
Disk Drive Error Messages •• 62
DO••••••••.•. 111
Dollar Sign (Also See $) •.• 74
DOPEN# ...••................ 64
DOS Errors ...•............. 62
OS •........................ 62
DS$.•...•••••.............. 62
DUMP •....•................. 28

EL ...••••.••••............ 106
ELSE •...........•.......•. 121
End of Basic RAM ..••••....• vi
Equal Sign (Also See =) •••• 74
ER•.••.•••••• 106
ERR$••..••.•••• 107
Error - Help Function ..•.•. 12
Error Handling •........... 103
Error Line Number 106
Error Messages 106

(316) 267-6525

EXIT•...• 115
Fields•.•... 73
Find - Rules For Use .•••••• 21
FIND•..•••••. 20
Forma t ••..•........•........ 4
Format Conventions •..•...... 3

Format String ••.....••..... 73
Formatted Input .••.••..... 100
Four Carets (Also See t) ... 74
Four Up Arrows (See t) 74
Formatted Output Commands .• 69
Function Keys•..••• 33
Garbage Collection•••••• 9
Get••••• 103
GETKEY•..••.• 102
Greater Than Sign (See j) •• 74
GUARANTE E ..•..•••.•••.•..... I
Hard~lare Compatibility IV
HELP•••.•..... 12
Hex to Decimal Conversion .. 32
Hexadecimal Numbers ..•..... 32
IF ... THEN •.• ELSE .•.•.•.... 121
INFORM••••. 100
INK•.....•••••. 48
INLINE••••••• 97
INLINE#•..••••.•• 99
INPUT••.•• 96
Installation Instructions. III
INSTR •••.......•...••...... 96
Introduction••....... 1
Jump Vectors ...••.•..•.... vii

xxiii

Simore Basic

APPENDIX

KERNAL Calls ••.••••.••.••• vii
KE Y •••••••••••.•••••••••••• 33
KEY CLR/NORM ••.•••••••••••• 35
KEY ON/OFF ••••••••••••••••• 35
Key Repeat Function •••••••• 43
Keywords •••••••••••••••••••• 3
Line Numberi ng •••••••••••.• 15
Line Renumbering ••••••.••.• 25
LIST ••••..••••••••••••••••• 17
Literal Characters ••••••••• 79
LOAD ••••••••••••••••••••••• 54
Loading Programs ••.•••••••• 54

LOOP •••••••••••••••••••••• 111
LOWER •••••••••••••••••••••• 42
Lower Case Printing •••••••. 42
Machine Language Compiler xvii
Machine Language Monitor ••• 47
Machine Language Monitor •• iii
Machine Language Programs ••• i
Memory Map (Graphic) ••••• xvii
Memory Map ••••••••••••••••• i x
MERGE •••••••••••••••••••••• 58
MID$ •••••••••••••••••••••• 119
Minus Sign (Also See -) •••• 74
Mode ••.••••••••.•.••.•...••. 6
MON •...••••..••.•••••••••• iii
MON I TOR •••••••••••••••••••• 47
NORM •••••••••••••••.••••••• 44
Notation System ••••••••••••. 2
Null String ••.••.••.••••••• 10
NUMBER •••••••••••••••.••••• 25

INSTRUCTION MANUAL

(316) 267-6525

OLD ..•••.••••••.••••••••••• 30
Opening a Relative File •••• 64
PAPER •••.•••••••••••••••••• 48
PEEK •••••••••••••••••••••• 123
PEEK ••••••••••••••••••••••• iv
Plus Sign (Also See +) ••••• 74
POKE ••.••••••••••••••••••• 123
POKE ••••••••••••••••••••••• iv
Pound Sign (Al so See #) •••• 74
PRINT AT ••••••••••••••••••• 69
PRINT USING •••••••••••••••• 72
PRINT# USING ••••••••••••••• 72
Printing Formatted Data •••• 72

Program Auto Load/Run •••••• 56
Program Conversion •••••••••• 7
Program Conversion Chart •• 129
Program Debugging •••..••••• 28
Program Errors •.•••••••••• 103
Program Line Renumbering ••• 25
Program Mode •••••••••••••••• 6
Program Variables •••••••••• 29
PUDEF •.•••••••••••••••••••• 93
RAM/ROM Banking •••••••••• viii
Reading Dos Error Messages • 62
RECORD# •••••••••••••••••••• 66
Relative Files .•••••••••••• 64
Relative Files ••••••••••••• 66
REM •••.•••••••••••••••••••• 14
Remarks •.•••••••••••••••••• 14
Renumber ••••••••••••••••••• 25
REPEAT ••••••••••••••••••••• 43

xxiv

S'more Basic

APPENDIX

Reserved Variables •....... 124
RESET ...••••••.•••••...•... 46
RESTORE ...••.........••••• 122
RESUME .•••••...•..•••••••• 108
ROM CALLS vi i
RS-232 Buffers .•.•••••••.•.. v
Rules For Fields .••...•••.. 89
RUN .•............•.•••••••• 56
Run a Program 56
RUN/STOP-RESTORE ...•.•••••• 45
S'more Basic Compiler ••.••. ii
S'more Basic Compiler •... xvii
S'more Basic Memory Map ix
S'more Demo Diskette ...• xviii
SAVE 54
Savi ng Programs 54
Screen Clear ...•.•.•.••••.• 40
Screen Color RAM 127
Screen Color Selection 49
Screen RAM ••.•••.••....... 127
S c ro 11 i n g ••••••••••••••••••• 8
SDUMP•.........•••..••• i v
Search ••••.........•••••••• 20
Sending Disk Commands•• 60
SID 124
Software Compatibility IV
Sound Interface Device ..•. 126
Special Characters 74
Speci a 1 Characters •........ 93
STOP .••...•••••••••..•..... 45
String Handling ••••.•..... 116

INSTRUCTION MANUAL

(316) 267-6525

Structured Programming •••• 110
Sub-routines (M/L)•.•••. i
SYS ••••••••••..•.•••••••.•• iv
System Lock-Up 30
System Reset ••••.•••••...•• 30
Table of Contents •••••..•••• V
Top of Basic RAM ••••..••••. vi
TRACE •••••••••••••••••••.•• 29
TRAP ••••••••••••••••••.•.• 104
Trouble Shooting ••••••...•• IV
Un-New .••.••.•••••••••..... 30
UNTIL 112
Up Arrows (Also See tl 74
Up/Down Scrolling .•••••••••• 8
UPPER ..••••••••••••.•.••••• 41
Upper Case/Graphics Mode .•• 41
Upper/Lower Case Mode ..•.•• 42
USING 72
Using Machine Language ••••• ii
USR .••••••.........•..••••• iv
Variable List (Dump) •••..•• 28
Vectors .•..••••••••••••.•. vi i
VERIFy ••..••••••.••••••..•• 54
VIC 124
vrD 124
Video Interface Controller 127
Video RAM .••.....•••••.•.• 127
WH I L E .•...••.••.•••••••.•• 112

xxv

This entire manual was composed using the
WRITE NOWl/64 word processor. This high
performance word processor is available from
your local CARDCO dealer. WRITE NOW! is
available on quick loading and reliable
cartridges for both the VIC-20 T$39.95) and
the Commodore 64 ($49.95).

Because the WRITE NOW! word processor
was designed by the same people that designed
your G-Wiz printer interface, you can be
assured that all of the advanced features of
your printer and interface will be fully
available for your use.

Additional features of WRITE NOWl/64 are:

80 column output to the screen
Full header and footer capability
Cut & Paste buffer
Full block functions.
Full disk drive commands included

(FORMAT, LOAD, SAVE, SCRATCH & RENAME
disk files from within the program)

Full search and search/replace functions
Prints text directly from disk files
Full formatting commands
Single key non-distructive disk directory
Four on-line HELP screens available
Prints up to 99 copies of each document
Prints complete or partial documents
User defined tab stops
Page numbers can be located anywhere
Page number in standard or Roman numerals
Wait for keyboard input anywhere in text
Optional conditional page command available
Fully links with other NOW! series programs
Keyboard overlay included

CoolB (8-85)

d

